Identifying rock fracture precursor by multivariate analysis based on the digital image correlation technique

数字图像相关 地质学 断裂(地质) 岩石力学 岩土工程 岩体分类 数字图像 矿物学 材料科学 图像处理 复合材料 图像(数学) 人工智能 计算机科学
作者
Peitao Wang,Qingru Liu,Yishan Zhang,Zhengjun Huang
出处
期刊:Theoretical and Applied Fracture Mechanics [Elsevier BV]
卷期号:126: 103987-103987 被引量:7
标识
DOI:10.1016/j.tafmec.2023.103987
摘要

Estimating the initiation and propagation of rock fractures and identifying fracture precursors are significant for rock failure analysis. This study performed numerical uniaxial compression tests of rock samples with an excavated hole and laboratory tests of rock-like samples. Statistical methods were used to analyze the precursory indices of full-field strain information based on digital image correlation (DIC) technology. An identification method for rock fracture initiation based on the absolute standard deviation (ASD) and absolute variation coefficient (AVC) of the strain field was proposed. The results indicated that a sudden change in the shear strain field during the loading process was closely related to the occurrence of internal cracks in the rocks. The variation laws of the ASD and AVC of the strain field were highly correlated with the rock fracture evolution. The progress in the variation rate of the strain field corresponded to the rock fracture evolution, and the change points can be used as precursors of the rock fracture. The precursory points of the excavated and rock-like samples in each crack propagation stage were at least 0.84% and 1.06% earlier than those of the current stage, respectively. The precursory points of each stage were 2.48% and 2.11% earlier than those of the final failure stage. The first precursory points were 45.45% and 42.11% earlier than the final failure time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pp发布了新的文献求助10
1秒前
1秒前
白山茶应助红炉点血采纳,获得10
2秒前
Marvel发布了新的文献求助10
2秒前
Gxmmmm_应助HJJHJH采纳,获得10
3秒前
3秒前
bioglia完成签到,获得积分10
3秒前
肖肖完成签到,获得积分10
3秒前
斯文败类应助香茶菜甲素采纳,获得10
3秒前
王甜甜发布了新的文献求助10
5秒前
叶子发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
杨昊轩发布了新的文献求助10
7秒前
王焕玉发布了新的文献求助10
7秒前
lili发布了新的文献求助10
7秒前
9秒前
dcx完成签到,获得积分10
9秒前
学术噗噗完成签到,获得积分10
9秒前
mm发布了新的文献求助10
10秒前
10秒前
222发布了新的文献求助10
10秒前
斯文败类应助tangyuan采纳,获得10
11秒前
爆米花应助文静疾采纳,获得10
11秒前
12秒前
12秒前
yishuihan完成签到,获得积分10
14秒前
15秒前
15秒前
沉静画板发布了新的文献求助10
16秒前
18秒前
我请问呢发布了新的文献求助10
23秒前
乐乐应助补丁采纳,获得10
23秒前
善学以致用应助kento采纳,获得10
23秒前
Dean应助花痴的慕蕊采纳,获得50
23秒前
24秒前
cherish完成签到,获得积分10
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908385
求助须知:如何正确求助?哪些是违规求助? 4185042
关于积分的说明 12996504
捐赠科研通 3951722
什么是DOI,文献DOI怎么找? 2167149
邀请新用户注册赠送积分活动 1185586
关于科研通互助平台的介绍 1092179