Mapping synthetic binding proteins epitopes on diverse protein targets by protein structure prediction and protein-protein docking

对接(动物) 计算生物学 表位 计算机科学 蛋白质工程 蛋白质-蛋白质相互作用 生物信息学 生物 生物化学 遗传学 抗体 医学 护理部
作者
Arzu Mijit,Xiaona Wang,Yanlin Li,Hangwei Xu,Yingjun Chen,Weiwei Xue
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107183-107183 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.107183
摘要

Synthetic binding proteins (SBPs) are a class of artificial proteins engineered from privileged protein scaffolds, which can form highly specific molecular recognition interfaces with a variety of targets. Due to the characteristics of small size, high stability, and good tissue permeability, SBPs have important applications in biomedical research, disease diagnosis and treatment. However, knowledge of SBPs epitopes on the structures of target proteins is still limited, which hinder the development of novel SBPs. In this study, based on the currently available information of SBPs and their targets, 96 pairs of interacting proteins referring to 96 representative SBPs and 80 different targets, were systemically investigated using the state-of-the-art computational modeling techniques including AlphaFold2 protein structure prediction and Rosetta protein-protein docking. As a result, 71 out of the 96 pairs were successfully docked, of which 18, 33, and 20 pairs were defined as models with high, medium, and acceptable quality, respectively. In addition, the interface information was analyzed to decipher the interaction types driven SBPs and targets recognition. Overall, this work not only provides important structural information for understanding the mechanism of action of other SBPs with same protein scaffold, but also for aiding the rational protein engineering and to design of novel SBPs with biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助缓慢海亦采纳,获得10
1秒前
传奇3应助阔达白筠采纳,获得10
1秒前
123关闭了123文献求助
1秒前
研友_VZG7GZ应助nyc采纳,获得10
1秒前
tianzml0应助斯文问旋采纳,获得20
2秒前
阔达尔芙完成签到,获得积分10
2秒前
周小博完成签到,获得积分10
2秒前
林薯条完成签到,获得积分10
5秒前
6秒前
禾平完成签到 ,获得积分10
9秒前
10秒前
12秒前
壹零零柒完成签到 ,获得积分10
13秒前
飞飞完成签到,获得积分10
17秒前
香菜完成签到,获得积分10
17秒前
YIN发布了新的文献求助10
17秒前
17秒前
cjy完成签到,获得积分10
18秒前
SciGPT应助昊昊采纳,获得10
19秒前
zxfaaaaa发布了新的文献求助10
20秒前
汉堡包应助文艺的土豆采纳,获得10
21秒前
海边听海完成签到 ,获得积分10
21秒前
HHHAN完成签到,获得积分10
21秒前
huanir99完成签到 ,获得积分10
22秒前
jhx完成签到,获得积分10
22秒前
JamesPei应助YIN采纳,获得10
23秒前
小Z顺利毕业完成签到,获得积分10
24秒前
27秒前
cnspower给cnspower的求助进行了留言
32秒前
xing发布了新的文献求助10
33秒前
bkagyin应助哈哈哈采纳,获得10
35秒前
35秒前
123发布了新的文献求助50
37秒前
科研通AI2S应助Arlo采纳,获得10
39秒前
流砂完成签到,获得积分10
40秒前
45秒前
tangchao完成签到,获得积分10
47秒前
morii发布了新的文献求助10
47秒前
48秒前
48秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164253
求助须知:如何正确求助?哪些是违规求助? 2814985
关于积分的说明 7907327
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317573
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228