Uni-GBSA: an open-source and web-based automatic workflow to perform MM/GB(PB)SA calculations for virtual screening

工作流程 虚拟筛选 计算机科学 分子力学 计算科学 结合亲和力 药物发现 计算生物学 化学 生物信息学 数据库 计算化学 分子动力学 生物 生物化学 受体
作者
Maohua Yang,Zonghua Bo,Tao Xu,Binghe Xu,Dongdong Wang,Hang Zheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:1
标识
DOI:10.1093/bib/bbad218
摘要

Abstract Binding free energy calculation of a ligand to a protein receptor is a fundamental objective in drug discovery. Molecular mechanics/Generalized-Born (Poisson–Boltzmann) surface area (MM/GB(PB)SA) is one of the most popular methods for binding free energy calculations. It is more accurate than most scoring functions and more computationally efficient than alchemical free energy methods. Several open-source tools for performing MM/GB(PB)SA calculations have been developed, but they have limitations and high entry barriers to users. Here, we introduce Uni-GBSA, a user-friendly automatic workflow to perform MM/GB(PB)SA calculations, which can perform topology preparation, structure optimization, binding free energy calculation and parameter scanning for MM/GB(PB)SA calculations. It also offers a batch mode that evaluates thousands of molecules against one protein target in parallel for efficient application in virtual screening. The default parameters are selected after systematic testing on the PDBBind-2011 refined dataset. In our case studies, Uni-GBSA produced a satisfactory correlation with the experimental binding affinities and outperformed AutoDock Vina in molecular enrichment. Uni-GBSA is available as an open-source package at https://github.com/dptech-corp/Uni-GBSA. It can also be accessed for virtual screening from the Hermite web platform at https://hermite.dp.tech. A free Uni-GBSA web server of a lab version is available at https://labs.dp.tech/projects/uni-gbsa/. This increases user-friendliness because the web server frees users from package installations and provides users with validated workflows for input data and parameter settings, cloud computing resources for efficient job completions, a user-friendly interface and professional support and maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助爱吃猫的鱼采纳,获得10
刚刚
石磊完成签到,获得积分10
刚刚
zky发布了新的文献求助10
刚刚
1秒前
活力山蝶给孙琳的求助进行了留言
1秒前
南宫映榕完成签到,获得积分10
1秒前
朴素鸽子完成签到,获得积分10
1秒前
MMX完成签到,获得积分10
2秒前
yaooo完成签到 ,获得积分10
2秒前
2秒前
hx发布了新的文献求助10
3秒前
yeye完成签到,获得积分10
3秒前
3秒前
3秒前
橙子完成签到 ,获得积分10
3秒前
芋泥波波完成签到,获得积分10
3秒前
hukun100完成签到,获得积分10
3秒前
简单的宛海完成签到,获得积分10
4秒前
4秒前
科研小白完成签到,获得积分10
4秒前
4秒前
yidashi完成签到,获得积分10
5秒前
orixero应助就叫小王吧采纳,获得10
5秒前
5秒前
5秒前
宋嘉新发布了新的文献求助10
6秒前
Flaoun4完成签到,获得积分20
6秒前
呜呜哇哇完成签到,获得积分10
6秒前
7秒前
南桑完成签到 ,获得积分10
7秒前
xxx完成签到 ,获得积分10
7秒前
屈狒狒完成签到,获得积分10
7秒前
7秒前
易壹发布了新的文献求助10
7秒前
小右发布了新的文献求助10
8秒前
Stella完成签到,获得积分10
8秒前
谢序泽发布了新的文献求助10
8秒前
怡然云朵发布了新的文献求助10
9秒前
yejian完成签到,获得积分10
10秒前
hea完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960387
求助须知:如何正确求助?哪些是违规求助? 3506503
关于积分的说明 11130906
捐赠科研通 3238717
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871982
科研通“疑难数据库(出版商)”最低求助积分说明 803118