Uni-GBSA: an open-source and web-based automatic workflow to perform MM/GB(PB)SA calculations for virtual screening

工作流程 虚拟筛选 计算机科学 分子力学 计算科学 结合亲和力 药物发现 计算生物学 化学 生物信息学 数据库 计算化学 分子动力学 生物 生物化学 受体
作者
Maohua Yang,Zonghua Bo,Tao Xu,Binghe Xu,Dongdong Wang,Hang Zheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:1
标识
DOI:10.1093/bib/bbad218
摘要

Abstract Binding free energy calculation of a ligand to a protein receptor is a fundamental objective in drug discovery. Molecular mechanics/Generalized-Born (Poisson–Boltzmann) surface area (MM/GB(PB)SA) is one of the most popular methods for binding free energy calculations. It is more accurate than most scoring functions and more computationally efficient than alchemical free energy methods. Several open-source tools for performing MM/GB(PB)SA calculations have been developed, but they have limitations and high entry barriers to users. Here, we introduce Uni-GBSA, a user-friendly automatic workflow to perform MM/GB(PB)SA calculations, which can perform topology preparation, structure optimization, binding free energy calculation and parameter scanning for MM/GB(PB)SA calculations. It also offers a batch mode that evaluates thousands of molecules against one protein target in parallel for efficient application in virtual screening. The default parameters are selected after systematic testing on the PDBBind-2011 refined dataset. In our case studies, Uni-GBSA produced a satisfactory correlation with the experimental binding affinities and outperformed AutoDock Vina in molecular enrichment. Uni-GBSA is available as an open-source package at https://github.com/dptech-corp/Uni-GBSA. It can also be accessed for virtual screening from the Hermite web platform at https://hermite.dp.tech. A free Uni-GBSA web server of a lab version is available at https://labs.dp.tech/projects/uni-gbsa/. This increases user-friendliness because the web server frees users from package installations and provides users with validated workflows for input data and parameter settings, cloud computing resources for efficient job completions, a user-friendly interface and professional support and maintenance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KYST完成签到,获得积分10
1秒前
科研通AI6应助小刘采纳,获得10
1秒前
2秒前
包妹发布了新的文献求助10
3秒前
4秒前
zl12应助大气摩托采纳,获得10
4秒前
5秒前
oVUVo完成签到,获得积分10
6秒前
6秒前
帅气诗槐发布了新的文献求助10
7秒前
8秒前
华仔应助guohao采纳,获得10
8秒前
完美世界应助云渺采纳,获得10
8秒前
8秒前
oVUVo发布了新的文献求助10
9秒前
9秒前
Tethys完成签到,获得积分10
10秒前
yun发布了新的文献求助10
10秒前
Limerencia发布了新的文献求助10
11秒前
faustss完成签到,获得积分10
11秒前
所所应助wei采纳,获得10
12秒前
sclai完成签到,获得积分10
12秒前
传说奢华发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
蝶梦完成签到,获得积分10
14秒前
15秒前
lx123发布了新的文献求助10
16秒前
善学以致用应助qaq采纳,获得10
17秒前
saber349完成签到,获得积分10
18秒前
哈哈哈发布了新的文献求助10
18秒前
goodbuhui发布了新的文献求助10
19秒前
20秒前
自信花瓣完成签到,获得积分20
20秒前
极速小鱼给极速小鱼的求助进行了留言
21秒前
句号0发布了新的文献求助10
22秒前
22秒前
慕听完成签到,获得积分10
22秒前
yayaha完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548