脂肪组织
脚手架
再生(生物学)
生物医学工程
脂肪生成
组织工程
脐静脉
化学
材料科学
细胞生物学
医学
体外
生物
生物化学
作者
J. Zhang,Zhen Zeng,Yanxin Chen,Li Deng,Yanxin Zhang,Yumei Que,Yiren Jiao,Jiang Chang,Zhihong Dong,Chen Yang
摘要
Abstract The increased number of mastectomies, combined with rising patient expectations for cosmetic and psychosocial outcomes, has necessitated the use of adipose tissue restoration techniques. However, the therapeutic effect of current clinical strategies is not satisfying due to the high demand of personalized customization and the timely vascularization in the process of adipose regeneration. Here, a composite hydrogel scaffold was prepared by three-dimensional (3D) printing technology, applying gelatin methacrylate anhydride (GelMA) as printing ink and calcium silicate (CS) bioceramic as an active ingredient for breast adipose tissue regeneration. The in vitro experiments showed that the composite hydrogel scaffolds could not only be customized with controllable architectures, but also significantly stimulated both 3T3-L1 preadipocytes and human umbilical vein endothelial cells in multiple cell behaviors, including cell adhesion, proliferation, migration and differentiation. Moreover, the composite scaffold promoted vascularized adipose tissue restoration under the skin of nude mice in vivo. These findings suggest that 3D-printed GelMA/CS composite scaffolds might be a good candidate for adipose tissue engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI