单层
阳极
材料科学
锂(药物)
MXenes公司
离子
空位缺陷
化学物理
纳米技术
结晶学
化学
物理化学
有机化学
电极
医学
内分泌学
作者
Gayatree Barik,Sourav Pal
摘要
The materials community is interested in discovering new two-dimensional (2D) crystals because of the potential for fascinating features. In this work, by employing a systematic first-principles DFT analysis and MD simulations, we investigated the potential applications of monolayer Mo borides containing flat and buckled boride rings named P6/mmm and R3̄m MoB2 as anode materials of lithium-ion batteries. Our preliminary investigations show that the MoB2 monolayers possess significant structural, thermodynamic, mechanical, and dynamical stability. Due to their distinctive crystal structures, the Mo borides exhibit unique electronic properties, as expected. Additionally, we discovered that the highly negative Li adsorption energy achieved can aid in stabilizing the Li's adsorption on the surface of MoB2 rather than clustering, which ensured its suitability for LIB anode applications. The low computed Li-ion and Li-vacancy migration energy barrier provides robust charge/discharge performance even at a fully lithiated state, signifying their extraordinary possibility of being a suitable anode material for Li batteries. Both the monolayers can hold a maximum of two layers of Li ions on both sides to give a huge specific capacity of 912 mA h g-1, much higher than graphene and MoS2-based anodes. The computed in-plane stiffness constants demonstrate that the monolayer pristine and lithiated MoB2 satisfies Born's criteria, implying its mechanical flexibility. Additionally, its strong mechanical and thermal properties at the pristine and the lithiated state indicate that the 2D MoB2 can withstand massive volume expansion at a high temperature of 500 K during the lithiation/de-lithiation reaction and is remarkably beneficial for manufacturing flexible anodes. Based on the above findings, these two newly designed classes of monolayers of MoB2 are anticipated to open a new avenue for the upcoming generation of lithium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI