Grouting reinforcement strategy for tunnel sand layer based on BP neural network

钢筋 人工神经网络 薄泥浆 反向传播 图层(电子) 岩土工程 信号(编程语言) 计算机科学 结构工程 工程类 人工智能 材料科学 复合材料 程序设计语言
作者
Qinglei Wang,Yongquan Zhu,Wenjiang Li,Pengbo Cui
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns.2023.1.00186
摘要

Abstract Tunnel sand layer grouting reinforcement is a major difficulty in the current development of underground space. Finding a suitable method strategy for grouting reinforcement of the road sand layer to ensure the smooth implementation of the construction is imminent. In this paper, by building a BP neural network model, using signal forward propagation algorithm and error back propagation algorithm, back propagation of the error signal through the implied layer to the input layer, increased accuracy of calculations. To prove that BP neural network based on can effectively enhance the effect of tunnel grouting reinforcement, propose strategies for tunnel sand layer grouting reinforcement. Proven by simulation experiments: the effect of grouting reinforcement is influenced by the grouting material, grouting pressure, and the condition of the injected medium. The grouting parameters, grouting compressive strength and grouting age are the three major factors affecting the grouting reinforcement effect as deduced from the BP neural network input layer and implicit layer, a BP neural network model can be built to derive the parameters of these three major influencing factors. The calculation shows that, BP neural networks can provide specific data that can be relied upon for grout reinforcement, its effect prediction accuracy can reach 98%. It can be seen that BP neural network has practical application in tunnel sand layer grouting reinforcement strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
透心凉1987完成签到,获得积分10
刚刚
2秒前
追寻奇迹完成签到 ,获得积分10
3秒前
3秒前
Tangtang561o完成签到 ,获得积分20
3秒前
明理的依柔完成签到,获得积分10
3秒前
yanyu给yanyu的求助进行了留言
4秒前
舒服的幻梅完成签到 ,获得积分10
4秒前
混子完成签到,获得积分10
4秒前
gej完成签到,获得积分10
6秒前
归尘发布了新的文献求助10
6秒前
久久发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
11秒前
11秒前
13秒前
Tangtang561o关注了科研通微信公众号
14秒前
ygr应助整齐的丹秋采纳,获得20
14秒前
贾明灵发布了新的文献求助10
14秒前
MX001发布了新的文献求助10
14秒前
Orange应助淡淡向卉采纳,获得10
14秒前
小勇仔发布了新的文献求助10
15秒前
16秒前
萌小萌发布了新的文献求助10
17秒前
womodou发布了新的文献求助10
17秒前
久久完成签到,获得积分10
17秒前
MX001完成签到,获得积分10
18秒前
19秒前
19秒前
秋霜发布了新的文献求助10
19秒前
20秒前
20秒前
run发布了新的文献求助10
20秒前
芥末牛完成签到,获得积分10
21秒前
NexusExplorer应助kuroyi采纳,获得10
21秒前
科研通AI5应助魅傲采纳,获得10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554566
求助须知:如何正确求助?哪些是违规求助? 3130354
关于积分的说明 9386677
捐赠科研通 2829714
什么是DOI,文献DOI怎么找? 1555657
邀请新用户注册赠送积分活动 726245
科研通“疑难数据库(出版商)”最低求助积分说明 715493