Carbon emissions predicting and decoupling analysis based on the PSO-ELM combined prediction model: evidence from Chongqing Municipality, China

粒子群优化 环境科学 极限学习机 解耦(概率) 碳纤维 温室气体 计量经济学 人工神经网络 计算机科学 数学 工程类 算法 生物 控制工程 机器学习 复合数 生态学
作者
Bo Liu,Haodong Chang,Yan Li,Yipeng Zhao
出处
期刊:Environmental Science and Pollution Research [Springer Nature]
卷期号:30 (32): 78849-78864 被引量:9
标识
DOI:10.1007/s11356-023-28022-w
摘要

The “14th Five-Year Plan” period is a crucial phase for China to achieve the goal of carbon peaking and carbon neutrality (referred to as the “double carbon”). Thus, it is very important to analyze the main factors affecting carbon emissions and accurately predict the change of carbon emissions to achieve the goal of double carbon. For the slow data updates and the low accuracy of traditional prediction models about the carbon emissions, the key factors of carbon emissions change selected by gray correlation method and the consumption of coal, oil, and natural gas were input into four single prediction models: gray prediction model GM(1,1), ridge regression, BP neural network, and WOA-BP neural network to obtain the fitted and predicted values of carbon emissions, which serve as input to the particle swarm optimization–extreme learning machine (PSO-ELM) model together. Based on the PSO-ELM combined prediction method above and the scenario prediction indicators constructed according to relevant policy documents of Chongqing Municipality, the carbon emission values of Chongqing Municipality during the 14th Five-Year Plan period are predicted in this paper. The empirical results show that carbon emissions of Chongqing Municipality still maintain an upward trend, but the growth rate slow down compared with 1998 to 2018. In general, the carbon emission and GDP of Chongqing Municipality showed a weak decoupling state during 1998 to 2025. By calculation, the PSO-ELM combined prediction model is superior to the above four single prediction models in carbon emission prediction and has good property by the robust testing. The research results can enrich the combined prediction method about the carbon emissions and provide policy suggestions for Chongqing’s low-carbon development during the 14th Five-Year Plan period.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Always完成签到,获得积分10
1秒前
1秒前
memedaaaah发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
平常的迎夏完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
隐形曼青应助秋澄采纳,获得10
5秒前
5秒前
7秒前
xzn发布了新的文献求助10
7秒前
hahaha发布了新的文献求助10
7秒前
7秒前
青云冰城发布了新的文献求助10
8秒前
oo发布了新的文献求助10
8秒前
8秒前
不倒翁37发布了新的文献求助10
9秒前
cmdan完成签到,获得积分10
9秒前
蓝溺完成签到,获得积分10
10秒前
邵小庆发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
桐桐应助cc采纳,获得10
12秒前
等待吐司应助欢喜代萱采纳,获得10
12秒前
ss完成签到 ,获得积分10
12秒前
刘乐发布了新的文献求助10
12秒前
柳觅夏发布了新的文献求助10
12秒前
Lucas应助芜湖芜湖采纳,获得10
13秒前
HOOW发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
16秒前
cytheria发布了新的文献求助10
16秒前
时间的过客完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961