亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Carbon emissions predicting and decoupling analysis based on the PSO-ELM combined prediction model: evidence from Chongqing Municipality, China

粒子群优化 环境科学 极限学习机 解耦(概率) 碳纤维 温室气体 计量经济学 人工神经网络 计算机科学 数学 工程类 算法 生物 控制工程 机器学习 复合数 生态学
作者
Bo Liu,Haodong Chang,Yan Li,Yipeng Zhao
出处
期刊:Environmental Science and Pollution Research [Springer Nature]
卷期号:30 (32): 78849-78864 被引量:9
标识
DOI:10.1007/s11356-023-28022-w
摘要

The “14th Five-Year Plan” period is a crucial phase for China to achieve the goal of carbon peaking and carbon neutrality (referred to as the “double carbon”). Thus, it is very important to analyze the main factors affecting carbon emissions and accurately predict the change of carbon emissions to achieve the goal of double carbon. For the slow data updates and the low accuracy of traditional prediction models about the carbon emissions, the key factors of carbon emissions change selected by gray correlation method and the consumption of coal, oil, and natural gas were input into four single prediction models: gray prediction model GM(1,1), ridge regression, BP neural network, and WOA-BP neural network to obtain the fitted and predicted values of carbon emissions, which serve as input to the particle swarm optimization–extreme learning machine (PSO-ELM) model together. Based on the PSO-ELM combined prediction method above and the scenario prediction indicators constructed according to relevant policy documents of Chongqing Municipality, the carbon emission values of Chongqing Municipality during the 14th Five-Year Plan period are predicted in this paper. The empirical results show that carbon emissions of Chongqing Municipality still maintain an upward trend, but the growth rate slow down compared with 1998 to 2018. In general, the carbon emission and GDP of Chongqing Municipality showed a weak decoupling state during 1998 to 2025. By calculation, the PSO-ELM combined prediction model is superior to the above four single prediction models in carbon emission prediction and has good property by the robust testing. The research results can enrich the combined prediction method about the carbon emissions and provide policy suggestions for Chongqing’s low-carbon development during the 14th Five-Year Plan period.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮静槐完成签到 ,获得积分10
刚刚
2分钟前
Timelapse应助dynamoo采纳,获得10
2分钟前
郭泓嵩完成签到,获得积分10
2分钟前
ZaZa完成签到,获得积分10
2分钟前
白华苍松发布了新的文献求助20
2分钟前
大模型应助白华苍松采纳,获得10
3分钟前
3分钟前
所所应助小王采纳,获得10
4分钟前
4分钟前
科研通AI2S应助不吃洋葱采纳,获得10
4分钟前
科目三应助xun采纳,获得10
4分钟前
Hello应助Ni采纳,获得10
4分钟前
dynamoo发布了新的文献求助10
4分钟前
4分钟前
Ni发布了新的文献求助10
4分钟前
5分钟前
Timelapse应助光亮亦竹采纳,获得10
5分钟前
ysc121完成签到 ,获得积分10
6分钟前
摸鱼学原理完成签到 ,获得积分10
6分钟前
帅气的小兔子完成签到 ,获得积分10
7分钟前
考博圣体完成签到 ,获得积分10
7分钟前
白华苍松发布了新的文献求助20
7分钟前
niuniu顺利毕业完成签到 ,获得积分10
7分钟前
NattyPoe完成签到,获得积分10
7分钟前
7分钟前
西山菩提完成签到,获得积分10
7分钟前
7分钟前
丘比特应助白华苍松采纳,获得10
7分钟前
lovelife完成签到,获得积分10
7分钟前
小王发布了新的文献求助10
8分钟前
8分钟前
dynamoo发布了新的文献求助10
8分钟前
8分钟前
洁净的千凡完成签到 ,获得积分10
9分钟前
9分钟前
sidashu发布了新的文献求助10
9分钟前
MGraceLi_sci完成签到,获得积分10
9分钟前
9分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565011
求助须知:如何正确求助?哪些是违规求助? 4649757
关于积分的说明 14689286
捐赠科研通 4591704
什么是DOI,文献DOI怎么找? 2519350
邀请新用户注册赠送积分活动 1491903
关于科研通互助平台的介绍 1463029