钝化
材料科学
能量转换效率
磁滞
钙钛矿(结构)
离子
化学工程
图层(电子)
氧化锡
表面能
阳极
钙钛矿太阳能电池
氧化物
表面改性
光电子学
纳米技术
复合材料
兴奋剂
物理化学
有机化学
电极
化学
冶金
工程类
物理
量子力学
作者
Li Yin,Changzeng Ding,Chenguang Liu,Chun Zhao,Wusong Zha,Ivona Z. Mitrović,Eng Gee Lim,Yunfei Han,Xiaomei Gao,Lianping Zhang,Haibin Wang,Yuanxi Li,Sebastian Wilken,Ronald Österbacka,Hongzhen Lin,Chang‐Qi Ma,Cezhou Zhao
标识
DOI:10.1002/aenm.202301161
摘要
Abstract At present, the dominating electron transport material (ETL) and hole transport material (HTL) used in the state‐of‐the‐art perovskite solar cells (PSCs) are tin oxide and 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine)‐9,9′‐spirobifluorene (Spiro‐OMeTAD). However, the surface hydroxyl groups of the SnO 2 layer and the Li + ions within the Spiro‐OMeTAD HTL layer generally cause surface charge recombination and Li + migration, significantly reducing the devices' performance and stability. Here, a molecule bridging layer of 3,5‐bis(fluorosulfonyl)benzoic acid (FBA) is introduced onto the SnO 2 surface, which provides appropriate surface energy, reduces interfacial traps, forms a better energy level alignment, and, most importantly, anchors (immobilizes) Li + ions in the ETL, and consequently improves the device power conversion efficiency (PCE) up to 24.26% without hysteresis. Moreover, the device with the FBA passivation layer shows excellent moisture and operational stability, maintaining over 80% of the initial PCE after 1000 h under both aging conditions. The current work provides a comprehensive understanding of the influence of the extrinsic Li + ion migration within the cell on the device's performance and stability, which helps design and fabricate high‐performance and hysteresis‐free PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI