Constructing high temperature proton exchange membranes with sandwich structure based on graphene oxide nanosheets and electrospinning polyvinyl chloride nanofibers

聚氯乙烯 纳米纤维 静电纺丝 石墨烯 氧化物 材料科学 化学工程 质子交换膜燃料电池 复合材料 高分子化学 化学 纳米技术 聚合物 冶金 工程类 生物化学
作者
Ke Liu,Tingting Zuo,Xiaoqing Wei,Shu Hu,Quantong Che
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:381: 121808-121808 被引量:3
标识
DOI:10.1016/j.molliq.2023.121808
摘要

Graphene oxide (GO) nanosheets were believed to possess the merits of extraordinary mechanical property, wide surface area and low price, etc. Polyvinyl chloride (PVC) nanofibers were prepared through the electrospinning technique and combined with GO nanosheets to construct the (PNs/GO/PNs)es membrane with sandwich structure. Furthermore, imidazolium-GO (ImGO) nanosheets were synthesized through the cations of imidazolim-based ionic liquids grafting GO nanosheets. In the prepared membranes, GO and ImGO nanosheets functioned as proton conduction carriers and combined phosphoric acid (PA) molecules with intermolecular hydrogen bonds. The outer PVC nanofibers mats protected the inner GO nanosheets layer and served as an efficient proton conduction media. On the basis of it, the prepared PA doped membranes possessed the improved proton conductivity and enhanced mechanical property, deriving from fast proton conduction and compact structure. Specifically, (PNs/GO/PNs)es/PA and PVC/ImGO/PA membranes exhibited the maximum proton conductivities of 9.26 × 10−2 S/cm and 2.63 × 10−2 S/cm at 150 °C. The residual values were respectively 9.02 × 10−2 S/cm and 3.41 × 10−2 S/cm after a 384 h non-stop at 120 °C. Notably, the tensile stress of the (PNs/GO/PNs)es/PA membrane reached 11.6 MPa, higher than 7.11 MPa of the (PNs/GO/PNs)es membrane. The research revealed that GO and ImGO nanosheets promoted proton conduction through combining PA molecules with the reduction of proton conduction resistance in high temperature proton exchange membranes (HTPEMs).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行者橙子完成签到,获得积分20
1秒前
1秒前
华仔应助整箱采纳,获得10
2秒前
起剑送红炉完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助一个土豆采纳,获得10
3秒前
羽宇完成签到,获得积分10
3秒前
6秒前
35号发光体完成签到,获得积分10
6秒前
新年发布了新的文献求助10
6秒前
7秒前
毛先生完成签到 ,获得积分10
7秒前
fxsg发布了新的文献求助30
8秒前
9秒前
Lucas应助王明磊采纳,获得10
10秒前
东方元语发布了新的文献求助20
10秒前
10秒前
Th完成签到,获得积分10
10秒前
10秒前
10秒前
阳光的嫣发布了新的文献求助10
11秒前
11秒前
11秒前
风月难安发布了新的文献求助10
13秒前
13秒前
靖宇完成签到,获得积分10
13秒前
草木完成签到,获得积分20
13秒前
哼哼发布了新的文献求助10
13秒前
13秒前
王珊完成签到,获得积分10
14秒前
思源应助花生采纳,获得10
14秒前
www发布了新的文献求助10
14秒前
Lucas应助小肥采纳,获得10
14秒前
夜凯发布了新的文献求助10
15秒前
15秒前
16秒前
Oliver完成签到,获得积分10
16秒前
16秒前
16秒前
行者橙子发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649603
求助须知:如何正确求助?哪些是违规求助? 4778715
关于积分的说明 15049374
捐赠科研通 4808630
什么是DOI,文献DOI怎么找? 2571661
邀请新用户注册赠送积分活动 1528083
关于科研通互助平台的介绍 1486851