DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes Using Velocity Obstacles

计算机科学 人工智能 计算机视觉 机器人 人机交互
作者
Zhanteng Xie,Philip Dames
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (4): 2700-2719 被引量:25
标识
DOI:10.1109/tro.2023.3257549
摘要

This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate autonomously through spaces filled with both static obstacles and dense crowds of pedestrians. The policy uses a unique combination of input data to generate the desired steering angle and forward velocity: a short history of lidar data, kinematic data about nearby pedestrians, and a subgoal point. The policy is trained in a reinforcement learning setting using a reward function that contains a novel term based on velocity obstacles to guide the robot to actively avoid pedestrians and move toward the goal. Through a series of 3-D simulated experiments with up to 55 pedestrians, this control policy is able to achieve a better balance between collision avoidance and speed (i.e., higher success rate and faster average speed) than state-of-the-art model-based and learning-based policies, and it also generalizes better to different crowd sizes and unseen environments. An extensive series of hardware experiments demonstrate the ability of this policy to directly work in different real-world environments with different crowd sizes with zero retraining. Furthermore, a series of simulated and hardware experiments show that the control policy also works in highly constrained static environments on a different robot platform without any additional training. Lastly, several important lessons that can be applied to other robot learning systems are summarized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆子发布了新的文献求助10
1秒前
1秒前
i7发布了新的文献求助10
1秒前
frank发布了新的文献求助10
1秒前
开放念云完成签到,获得积分20
2秒前
2秒前
复成发布了新的文献求助10
2秒前
2秒前
wangchaofk完成签到,获得积分10
2秒前
zhangzy发布了新的文献求助10
2秒前
Green发布了新的文献求助10
3秒前
Gamen完成签到,获得积分20
3秒前
guli完成签到,获得积分10
3秒前
3秒前
vothuong完成签到,获得积分10
3秒前
My发布了新的文献求助10
4秒前
定西完成签到,获得积分10
4秒前
4秒前
xuyang完成签到,获得积分10
4秒前
4秒前
Rufina0720发布了新的文献求助10
4秒前
ava完成签到,获得积分10
5秒前
朴素的向雁完成签到,获得积分10
5秒前
5秒前
大模型应助鱼鱼子999采纳,获得10
6秒前
lbc发布了新的文献求助10
6秒前
开放念云发布了新的文献求助10
6秒前
稳重诗珊发布了新的文献求助10
6秒前
teng123完成签到 ,获得积分10
7秒前
璐璐完成签到,获得积分10
7秒前
zhang发布了新的文献求助10
7秒前
gggggggbao发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
10秒前
现代宝宝完成签到,获得积分10
10秒前
璐璐发布了新的文献求助10
11秒前
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262