DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes Using Velocity Obstacles

计算机科学 人工智能 计算机视觉 机器人 人机交互
作者
Zhanteng Xie,Philip Dames
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (4): 2700-2719 被引量:25
标识
DOI:10.1109/tro.2023.3257549
摘要

This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate autonomously through spaces filled with both static obstacles and dense crowds of pedestrians. The policy uses a unique combination of input data to generate the desired steering angle and forward velocity: a short history of lidar data, kinematic data about nearby pedestrians, and a subgoal point. The policy is trained in a reinforcement learning setting using a reward function that contains a novel term based on velocity obstacles to guide the robot to actively avoid pedestrians and move toward the goal. Through a series of 3-D simulated experiments with up to 55 pedestrians, this control policy is able to achieve a better balance between collision avoidance and speed (i.e., higher success rate and faster average speed) than state-of-the-art model-based and learning-based policies, and it also generalizes better to different crowd sizes and unseen environments. An extensive series of hardware experiments demonstrate the ability of this policy to directly work in different real-world environments with different crowd sizes with zero retraining. Furthermore, a series of simulated and hardware experiments show that the control policy also works in highly constrained static environments on a different robot platform without any additional training. Lastly, several important lessons that can be applied to other robot learning systems are summarized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我是老大应助聪慧的怀绿采纳,获得10
2秒前
ydy3128完成签到,获得积分10
2秒前
用头打碟发布了新的文献求助10
3秒前
範範完成签到,获得积分10
3秒前
海德堡发布了新的文献求助10
4秒前
阿喵完成签到,获得积分10
5秒前
八二力发布了新的文献求助10
5秒前
酷炫的听枫完成签到 ,获得积分10
6秒前
孔问筠完成签到,获得积分10
6秒前
HSY发布了新的文献求助10
7秒前
用头打碟完成签到,获得积分20
8秒前
英勇笑萍完成签到,获得积分10
13秒前
li发布了新的文献求助20
16秒前
打打应助魔幻的忆秋采纳,获得10
17秒前
18秒前
科目三应助薛定谔的猫采纳,获得100
19秒前
21秒前
首席医官完成签到,获得积分10
21秒前
22秒前
22秒前
笨笨凡之发布了新的文献求助30
23秒前
tiantiantian发布了新的文献求助10
25秒前
sunlanglang发布了新的文献求助10
26秒前
26秒前
23发布了新的文献求助100
27秒前
Awei发布了新的文献求助10
28秒前
humble完成签到,获得积分10
29秒前
考拉完成签到 ,获得积分10
29秒前
31秒前
许晓蝶完成签到,获得积分10
32秒前
搜集达人应助ding采纳,获得10
33秒前
DeenMayo完成签到,获得积分10
33秒前
33秒前
ZYH完成签到 ,获得积分10
36秒前
asipilin发布了新的文献求助10
36秒前
36秒前
香蕉觅云应助tiantiantian采纳,获得10
38秒前
情怀应助tiantiantian采纳,获得10
38秒前
斯文败类应助tiantiantian采纳,获得10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468