DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes Using Velocity Obstacles

计算机科学 人工智能 计算机视觉 机器人 人机交互
作者
Zhanteng Xie,Philip Dames
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (4): 2700-2719 被引量:25
标识
DOI:10.1109/tro.2023.3257549
摘要

This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate autonomously through spaces filled with both static obstacles and dense crowds of pedestrians. The policy uses a unique combination of input data to generate the desired steering angle and forward velocity: a short history of lidar data, kinematic data about nearby pedestrians, and a subgoal point. The policy is trained in a reinforcement learning setting using a reward function that contains a novel term based on velocity obstacles to guide the robot to actively avoid pedestrians and move toward the goal. Through a series of 3-D simulated experiments with up to 55 pedestrians, this control policy is able to achieve a better balance between collision avoidance and speed (i.e., higher success rate and faster average speed) than state-of-the-art model-based and learning-based policies, and it also generalizes better to different crowd sizes and unseen environments. An extensive series of hardware experiments demonstrate the ability of this policy to directly work in different real-world environments with different crowd sizes with zero retraining. Furthermore, a series of simulated and hardware experiments show that the control policy also works in highly constrained static environments on a different robot platform without any additional training. Lastly, several important lessons that can be applied to other robot learning systems are summarized.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科妍通AI2_1应助核桃采纳,获得50
刚刚
刚刚
1秒前
2秒前
李健的小迷弟应助高赛文采纳,获得10
3秒前
小马甲应助momo采纳,获得10
3秒前
再给我两分钟完成签到,获得积分10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
香蕉幻然发布了新的文献求助10
5秒前
Rosemary发布了新的文献求助10
6秒前
6秒前
8秒前
慈祥的惜梦应助莫123采纳,获得10
9秒前
呆萌的奎关注了科研通微信公众号
9秒前
我在完成签到,获得积分10
10秒前
10秒前
NexusExplorer应助irisy采纳,获得10
11秒前
rui应助DJDJDDDJ采纳,获得20
11秒前
11秒前
abcd发布了新的文献求助10
12秒前
小二郎应助展锋采纳,获得10
13秒前
14秒前
干净博涛完成签到 ,获得积分10
14秒前
科妍通AI2_1应助核桃采纳,获得30
15秒前
NexusExplorer应助核桃采纳,获得10
15秒前
小青椒应助核桃采纳,获得30
15秒前
英姑应助核桃采纳,获得10
15秒前
小蘑菇应助核桃采纳,获得10
16秒前
Owen应助核桃采纳,获得10
16秒前
赘婿应助drftgyhuij采纳,获得10
16秒前
无花果应助核桃采纳,获得10
16秒前
今后应助核桃采纳,获得10
16秒前
16秒前
Hello应助核桃采纳,获得10
16秒前
七凌完成签到,获得积分10
16秒前
SciGPT应助陈的住气采纳,获得10
18秒前
科研通AI6.1应助陈的住气采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879