DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes Using Velocity Obstacles

计算机科学 人工智能 计算机视觉 机器人 人机交互
作者
Zhanteng Xie,Philip Dames
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (4): 2700-2719 被引量:25
标识
DOI:10.1109/tro.2023.3257549
摘要

This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate autonomously through spaces filled with both static obstacles and dense crowds of pedestrians. The policy uses a unique combination of input data to generate the desired steering angle and forward velocity: a short history of lidar data, kinematic data about nearby pedestrians, and a subgoal point. The policy is trained in a reinforcement learning setting using a reward function that contains a novel term based on velocity obstacles to guide the robot to actively avoid pedestrians and move toward the goal. Through a series of 3-D simulated experiments with up to 55 pedestrians, this control policy is able to achieve a better balance between collision avoidance and speed (i.e., higher success rate and faster average speed) than state-of-the-art model-based and learning-based policies, and it also generalizes better to different crowd sizes and unseen environments. An extensive series of hardware experiments demonstrate the ability of this policy to directly work in different real-world environments with different crowd sizes with zero retraining. Furthermore, a series of simulated and hardware experiments show that the control policy also works in highly constrained static environments on a different robot platform without any additional training. Lastly, several important lessons that can be applied to other robot learning systems are summarized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助小马哥采纳,获得10
2秒前
3秒前
3秒前
3秒前
Haucicy发布了新的文献求助10
4秒前
4秒前
豆子完成签到,获得积分10
6秒前
6秒前
7秒前
zoe发布了新的文献求助50
7秒前
8秒前
8秒前
一杯晨汁发布了新的文献求助10
9秒前
LZY发布了新的文献求助10
9秒前
王世俊完成签到,获得积分10
10秒前
积极废物完成签到 ,获得积分10
11秒前
11秒前
认真果汁发布了新的文献求助10
11秒前
meethaha发布了新的文献求助10
11秒前
wdg发布了新的文献求助30
12秒前
12秒前
细腻慕儿完成签到,获得积分10
14秒前
田様应助温婉的篮球采纳,获得10
16秒前
坦率的从波完成签到 ,获得积分10
16秒前
wdg完成签到,获得积分20
18秒前
18秒前
彭佳乐发布了新的文献求助10
18秒前
小李完成签到,获得积分10
19秒前
糊涂的语兰完成签到,获得积分10
20秒前
CipherSage应助酷炫莺采纳,获得10
21秒前
温婉的篮球完成签到,获得积分10
23秒前
24秒前
25秒前
彭佳乐完成签到,获得积分10
26秒前
zhu发布了新的文献求助10
26秒前
小石头完成签到,获得积分10
26秒前
123完成签到,获得积分10
29秒前
一杯晨汁完成签到 ,获得积分10
29秒前
Mopharaoh发布了新的文献求助10
29秒前
许多多完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545687
求助须知:如何正确求助?哪些是违规求助? 3977248
关于积分的说明 12315975
捐赠科研通 3645392
什么是DOI,文献DOI怎么找? 2007595
邀请新用户注册赠送积分活动 1043179
科研通“疑难数据库(出版商)”最低求助积分说明 932011