Early neurofilament light and glial fibrillary acidic protein levels improve predictive models of multiple sclerosis outcomes

医学 多发性硬化 扩大残疾状况量表 内科学 胶质纤维酸性蛋白 病理 免疫学 免疫组织化学
作者
Gauruv Bose,Brian C. Healy,Shrishti Saxena,Fermisk Saleh,Anu Paul,Christian Barro,Hrishikesh Lokhande,Mariann Polgar-Turcsanyi,Mark Anderson,Bonnie I. Glanz,Charles R.G. Guttmann,Rohit Bakshi,Howard L. Weiner,Tanuja Chitnis
出处
期刊:Multiple sclerosis and related disorders [Elsevier]
卷期号:74: 104695-104695 被引量:1
标识
DOI:10.1016/j.msard.2023.104695
摘要

Early risk-stratification in multiple sclerosis (MS) may impact treatment decisions. Current predictive models have identified that clinical and imaging characteristics of aggressive disease are associated with worse long-term outcomes. Serum biomarkers, neurofilament (sNfL) and glial fibrillary acidic protein (sGFAP), reflect subclinical disease activity through separate pathological processes and may contribute to predictive models of clinical and MRI outcomes.We conducted a retrospective analysis of the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital (CLIMB study), where patients with multiple sclerosis are seen every 6 months and undergo Expanded Disability Status Scale (EDSS) assessment, have annual brain MRI scans where volumetric analysis is conducted to calculate T2-lesion volume (T2LV) and brain parenchymal fraction (BPF), and donate a yearly blood sample for subsequent analysis. We included patients with newly diagnosed relapsing-remitting MS and serum samples obtained at baseline visit and 1-year follow-up (both within 3 years of onset), and were assessed at 10-year follow-up. We measured sNfL and sGFAP by single molecule array at baseline visit and at 1-year follow-up. A predictive clinical model was developed using age, sex, Expanded Disability Status Scale (EDSS), pyramidal signs, relapse rate, and spinal cord lesions at first visit. The main outcome was odds of developing of secondary progressive (SP)MS at year 10. Secondary outcomes included 10-year EDSS, brain T2LV and BPF. We compared the goodness-of-fit of the predictive clinical model with and without sNfL and sGFAP at baseline and 1-year follow-up, for each outcome by area under the receiver operating characteristic curve (AUC) or R-squared.A total 144 patients with median MS onset at age 37.4 years (interquartile range: 29.4-45.4), 64% female, were included. SPMS developed in 25 (17.4%) patients. The AUC for the predictive clinical model without biomarker data was 0.73, which improved to 0.77 when both sNfL and sGFAP were included in the model (P = 0.021). In this model, higher baseline sGFAP associated with developing SPMS (OR=3.3 [95%CI:1.1,10.6], P = 0.04). Adding 1-year follow-up biomarker levels further improved the model fit (AUC = 0.79) but this change was not statistically significant (P = 0.15). Adding baseline biomarker data also improved the R-squared of clinical models for 10-year EDSS from 0.24 to 0.28 (P = 0.032), while additional 1-year follow-up levels did not. Baseline sGFAP was associated with 10-year EDSS (ß=0.58 [95%CI:0.00,1.16], P = 0.05). For MRI outcomes, baseline biomarker levels improved R-squared for T2LV from 0.12 to 0.27 (P<0.001), and BPF from 0.15 to 0.20 (P = 0.042). Adding 1-year follow-up biomarker data further improved T2LV to 0.33 (P = 0.0065) and BPF to 0.23 (P = 0.048). Baseline sNfL was associated with T2LV (ß=0.34 [95%CI:0.21,0.48], P<0.001) and 1-year follow-up sNfL with BPF (ß=-2.53% [95%CI:-4.18,-0.89], P = 0.003).Early biomarker levels modestly improve predictive models containing clinical and MRI variables. Worse clinical outcomes, SPMS and EDSS, are associated with higher sGFAP levels and worse MRI outcomes, T2LV and BPF, are associated with higher sNfL levels. Prospective study implementing these predictive models into clinical practice are needed to determine if early biomarker levels meaningfully impact clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
第七兵团司令完成签到,获得积分10
1秒前
1秒前
qwq应助追梦采纳,获得10
1秒前
1秒前
2秒前
我爱Chem完成签到 ,获得积分10
2秒前
半生发布了新的文献求助30
3秒前
3秒前
成就梦松完成签到,获得积分10
3秒前
byyyy完成签到,获得积分10
3秒前
温暖的俊驰完成签到,获得积分10
4秒前
Isabel完成签到,获得积分10
4秒前
yx应助陈强采纳,获得30
5秒前
sokach发布了新的文献求助10
7秒前
缓慢荔枝发布了新的文献求助10
7秒前
123发布了新的文献求助10
8秒前
天御雪完成签到,获得积分10
8秒前
gen关闭了gen文献求助
8秒前
8秒前
科研通AI5应助oldlee采纳,获得10
9秒前
9秒前
MADKAI发布了新的文献求助10
9秒前
哈哈悦完成签到,获得积分10
9秒前
赘婿应助duoduozs采纳,获得10
9秒前
kai完成签到,获得积分10
10秒前
10秒前
情怀应助xhy采纳,获得10
10秒前
整齐的灭绝完成签到 ,获得积分10
11秒前
充电宝应助船舵采纳,获得10
11秒前
lqphysics完成签到,获得积分10
11秒前
11秒前
小小完成签到 ,获得积分10
12秒前
320me666完成签到,获得积分10
13秒前
13秒前
velpro发布了新的文献求助10
14秒前
科研通AI5应助masu采纳,获得10
14秒前
小狸跟你拼啦完成签到,获得积分10
14秒前
寂寞的灵发布了新的文献求助10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672