Artificial Intelligence–Based Psychotherapeutic Intervention on Psychological Outcomes: A Meta‐Analysis and Meta‐Regression

荟萃分析 元回归 心理学 干预(咨询) 临床心理学 回归分析 心理治疗师 医学 精神科 计算机科学 机器学习 内科学
作者
Ying Lau,Wei How Darryl Ang,Wen Wei Ang,Patrick Cheong-Iao Pang,Sai Ho Wong,Kin Sun Chan
出处
期刊:Depression and Anxiety [Wiley]
卷期号:2025 (1)
标识
DOI:10.1155/da/8930012
摘要

Background: Artificial intelligence (AI)–based psychotherapeutic interventions may bring a new and viable approach to expanding psychiatric care. However, evidence of their effectiveness remains scarce. We evaluated the efficacy of AI‐based psychotherapeutic interventions on depressive, anxiety, and stress symptoms at postintervention and follow‐up assessments. Methods: A three‐step comprehensive search via nine electronic databases (PubMed, Embase, CINAHL, Cochrane Library, Scopus, IEEE Xplore, Web of Science, PsycINFO, and ProQuest Dissertations and Theses) was performed. Results: Thirty randomized controlled trials (RCTs) in 31 publications involving 6100 participants from nine countries were included. The majority (79.1%) of trials with intention‐to‐treat analysis but less than half (48.6%) of trials with perprotocol analysis were graded as low risk. Meta‐analyses showed that interventions significantly reduced depressive symptoms at the postintervention assessment ( t = −4.40, p = 0.001) with medium effect size ( g = −0.54, 95% CI: −0.79 to −0.29) and at 6–12 months of assessment ( t = −3.14, p < 0.016) with small effect size ( g = −0.23, 95% CI: −0.40 to −0.06) in comparison with comparators. Our subgroup analyses revealed that the depressed participants had a significantly larger effect size in reducing depressive symptoms than participants with stress and other conditions. At postintervention and follow‐up assessments, we discovered that AI‐based psychotherapeutic interventions did not significantly alter anxiety, stress, and the total scores of depressive, anxiety, and stress symptoms in comparison to comparators. The random‐effects univariate meta‐regression did not identify any significant covariates for depressive and anxiety symptoms at postintervention. The certainty of evidence ranged between moderate and very low. Conclusions: AI‐based psychotherapeutic interventions can be used in addition to usual treatments for reducing depressive symptoms. Well‐designed RCTs with long‐term follow‐up data are warranted. Trial Registration: CRD42022330228
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奥雷里亚诺的小金鱼完成签到,获得积分10
1秒前
踏实晓啸完成签到,获得积分10
1秒前
gcc应助nenoaowu采纳,获得20
2秒前
科研通AI5应助小9采纳,获得10
2秒前
l123完成签到,获得积分10
3秒前
3秒前
3秒前
呆萌傲丝发布了新的文献求助10
3秒前
烟花应助seven采纳,获得10
3秒前
椰子树完成签到,获得积分10
4秒前
威武鹤轩完成签到,获得积分10
5秒前
坚果发布了新的文献求助10
5秒前
6秒前
木头发布了新的文献求助10
7秒前
9秒前
JJy完成签到 ,获得积分10
10秒前
10秒前
11秒前
13秒前
忧郁老头发布了新的文献求助10
13秒前
木头完成签到,获得积分10
14秒前
fcyyc发布了新的文献求助30
14秒前
莉莉发布了新的文献求助10
15秒前
白什么冰完成签到 ,获得积分10
16秒前
热情的夏完成签到,获得积分10
16秒前
17秒前
17秒前
咕咕发布了新的文献求助10
18秒前
深情安青应助听话的白易采纳,获得10
19秒前
呆萌傲丝完成签到,获得积分10
19秒前
qin希望应助胡豆豆采纳,获得10
19秒前
依沐发布了新的文献求助10
22秒前
Hello应助布谷采纳,获得20
22秒前
letter完成签到 ,获得积分10
22秒前
八戒发布了新的文献求助10
23秒前
23秒前
23秒前
青山发布了新的文献求助10
24秒前
英俊的铭应助liuarise采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554023
求助须知:如何正确求助?哪些是违规求助? 3129774
关于积分的说明 9384215
捐赠科研通 2828860
什么是DOI,文献DOI怎么找? 1555285
邀请新用户注册赠送积分活动 725954
科研通“疑难数据库(出版商)”最低求助积分说明 715349