亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rational Design for Antioxidant Diphenylamine Derivatives Using Quantitative Structure–Activity Relationships and Quantum Mechanics Calculations

数量结构-活动关系 化学 分配系数 计算化学 自动氧化 氢键 分子 物理化学 有机化学 立体化学
作者
Ayokanmi Joseph Aremu,Phiphob Naweephattana,Ismail Dwi Putra,Borwornlak Toopradab,Phornphimon Maitarad,Thanyada Rungrotmongkol
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:46 (4)
标识
DOI:10.1002/jcc.70055
摘要

ABSTRACT Diphenylamine (DPA) derivatives, used as antioxidants in rubber‐based products, inhibit autoxidation by donating hydrogen atoms to peroxyl radicals. Octanol–water partition coefficient (LogK ow ), an antioxidant index, helps predict their distribution in hydrophobic polymer matrices. Therefore, this study aimed to investigate the relationship between the structure of DPA derivatives and their antioxidant activities, using machine learning with quantitative structure–activity relationships (QSAR) and quantum mechanics (QM). The structure of DPA derivatives was optimized using Density Functional Theory and analyzed for molecular properties. The QSAR models were trained using important descriptors identified through permutation importance. Among the models developed, the Gradient Boosting Regressor (GBR) showed the best performance, with R 2 of 0.983 and root mean square error (RMSE) of 0.642 for the test set. SHAP analysis revealed that molecular weight and electronic properties significantly influenced LogK ow predictions. For instance, a higher molecular weight was associated with increased LogK ow , and a higher positive charge of C2 correlated with higher LogK ow predictions. Consequently, the two potent compounds (D1 and D2) were designed based on QSAR model guidance. The GBR model predicted LogK ow values of 9.789 and 7.102 for D1 and D2, respectively, which are higher than the training compounds in the model. To gain molecular insight, the quantum chemical calculations with M062X/6–311++G(d,p)//M062X/6‐31G(d,p) were performed to investigate the bond dissociation enthalpy (BDE). The results showed that D1 (79.50 kcal/mol) and D2 (72.43 kcal/mol) exhibited lower BDEs than the reference compounds, suggesting that the designed compounds have the potential for enhanced antioxidant activity. In addition, the antioxidant reaction mechanism was studied by using M062X/6–311++G(d,p)//M062X/6‐31G(d,p) which found that the hydrogen atom transfer is the key step, where D1 and D2 showed activation energy barriers of 10.38 and 6.29 kcal/mol, respectively, compared to reference compounds of R3 (10.39 kcal/mol), R1 (10.40 kcal/mol), and R2 (18.26 kcal/mol). Therefore, our findings demonstrate that integrating QSAR with quantum chemical calculations can effectively guide the design of DPA derivatives with improved antioxidant properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
招风鼠发布了新的文献求助20
2秒前
清逸之风完成签到 ,获得积分10
5秒前
7秒前
terryok发布了新的文献求助30
9秒前
搜集达人应助xinyi采纳,获得10
11秒前
mount发布了新的文献求助10
12秒前
小廖发布了新的文献求助10
13秒前
小冯完成签到 ,获得积分10
16秒前
小孟吖完成签到 ,获得积分10
16秒前
18秒前
20秒前
20秒前
bkagyin应助科研通管家采纳,获得10
21秒前
21秒前
英姑应助科研通管家采纳,获得10
21秒前
Akim应助Vaibhav采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
李淡定发布了新的文献求助30
23秒前
karofly发布了新的文献求助10
26秒前
26秒前
26秒前
xinyi发布了新的文献求助10
27秒前
球球发布了新的文献求助10
30秒前
英俊的铭应助zhangling采纳,获得10
32秒前
阿鑫完成签到 ,获得积分10
34秒前
疯狂的迪子完成签到 ,获得积分10
38秒前
43秒前
43秒前
Vaibhav发布了新的文献求助10
48秒前
49秒前
汉堡包应助xinyi采纳,获得10
52秒前
zhangling发布了新的文献求助10
54秒前
pluto应助wxyllxx采纳,获得30
57秒前
1分钟前
Doctor_Mill完成签到,获得积分10
1分钟前
1分钟前
小嘎完成签到 ,获得积分10
1分钟前
Vaibhav完成签到,获得积分10
1分钟前
健康的修洁完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566527
求助须知:如何正确求助?哪些是违规求助? 3139282
关于积分的说明 9431329
捐赠科研通 2840134
什么是DOI,文献DOI怎么找? 1560950
邀请新用户注册赠送积分活动 730090
科研通“疑难数据库(出版商)”最低求助积分说明 717816