Dimensionally Confined Growth in Nanometer‐Sized Hierarchical Heterostructures: Nanoscale Visualization of Enhanced Magnetic and Electric Interactions

材料科学 纳米 纳米尺度 纳米技术 异质结 可视化 光电子学 复合材料 计算机科学 人工智能
作者
Yihao Liu,Xiaodi Zhou,Guanyu Chen,Ruixuan Zhang,Mingyue Yuan,Xiangyu Wang,Huibin Zhang,Xuhui Xiong,Hualiang Lv,Renchao Che
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202420679
摘要

Abstract Quantum size effects and interfacial dimensional interactions enable nanometer‐scale hierarchical heterostructures to adjust band structures by energy level discretization, impurity level formation, and band inversion, allowing for controlled carrier localization and directional relaxation. These unique characteristics show great potential for applications in ferroelectrics, optoelectronics, capacitors, and sensors. Yet, optimizing performance by fine‐tuning the dimensional properties of nanoscale systems, especially size and composition, remains a considerable challenge. Here a dimensionally confined controlled synthesis of hierarchical heterostructures is reported through a pyrolysis‐based metal‐organic framework‐on‐metal‐organic framework (MOF‐on‐MOF) strategy, resulting in continuous metal‐carbon and carbon‐oxide interfaces below 50 nm. Off‐axis electron holography and theoretical calculations are utilized to visualize the dynamic conversion between localized and free electrons, as well as the relaxation processes and high‐density magnetic coupling at the nanoscale. These phenomena are rarely observed in micron‐scale or non‐hierarchical heterostructures. These improvements lead to significantly enhanced magnetic and dielectric properties, allowing for efficient interaction with high‐frequency electromagnetic (EM) fields, as indicated by a loss of bandwidth covering the full C‐band. Future work will explore constructing these interfaces with targeted materials to examine new properties, such as topological behavior, ferrimagnetism, and giant magnetoresistance, with applications in sustainability and optoelectronic technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
德行天下完成签到,获得积分10
刚刚
Jenny应助lan采纳,获得10
1秒前
fztnh完成签到,获得积分10
1秒前
上官若男应助lyz666采纳,获得10
1秒前
顾念完成签到 ,获得积分10
1秒前
277发布了新的文献求助10
2秒前
小二郎应助GCD采纳,获得10
3秒前
hhhhhh完成签到 ,获得积分10
3秒前
甜味拾荒者完成签到,获得积分10
5秒前
小二郎应助BONBON采纳,获得10
5秒前
6秒前
charllie完成签到 ,获得积分10
6秒前
空禅yew完成签到,获得积分10
7秒前
坚强亦丝应助跳跃采纳,获得10
9秒前
英俊的铭应助cc采纳,获得10
9秒前
huangsan完成签到,获得积分10
9秒前
匹诺曹完成签到,获得积分10
9秒前
10秒前
华仔应助进取拼搏采纳,获得10
10秒前
11秒前
dingdong发布了新的文献求助10
11秒前
you完成签到 ,获得积分10
12秒前
qwf完成签到 ,获得积分10
12秒前
13秒前
万能图书馆应助一一采纳,获得10
13秒前
执着跳跳糖完成签到 ,获得积分10
14秒前
阳yang完成签到,获得积分10
14秒前
牛头人完成签到,获得积分10
14秒前
15秒前
Rrr发布了新的文献求助10
15秒前
16秒前
16秒前
serenity完成签到 ,获得积分10
16秒前
Benliu完成签到,获得积分10
16秒前
csq发布了新的文献求助10
17秒前
18秒前
Hello应助外向的醉易采纳,获得10
18秒前
DWWWDAADAD完成签到,获得积分10
21秒前
科研通AI5应助一天八杯水采纳,获得10
22秒前
杨大仙儿完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808