Dimensionally Confined Growth in Nanometer‐Sized Hierarchical Heterostructures: Nanoscale Visualization of Enhanced Magnetic and Electric Interactions

材料科学 纳米 纳米尺度 纳米技术 异质结 可视化 光电子学 复合材料 计算机科学 人工智能
作者
Yihao Liu,Xiaodi Zhou,Guanyu Chen,R.‐B. Zhang,Mingyue Yuan,Xiangyu Wang,Huibin Zhang,Xuhui Xiong,Hualiang Lv,Renchao Che
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202420679
摘要

Abstract Quantum size effects and interfacial dimensional interactions enable nanometer‐scale hierarchical heterostructures to adjust band structures by energy level discretization, impurity level formation, and band inversion, allowing for controlled carrier localization and directional relaxation. These unique characteristics show great potential for applications in ferroelectrics, optoelectronics, capacitors, and sensors. Yet, optimizing performance by fine‐tuning the dimensional properties of nanoscale systems, especially size and composition, remains a considerable challenge. Here a dimensionally confined controlled synthesis of hierarchical heterostructures is reported through a pyrolysis‐based metal‐organic framework‐on‐metal‐organic framework (MOF‐on‐MOF) strategy, resulting in continuous metal‐carbon and carbon‐oxide interfaces below 50 nm. Off‐axis electron holography and theoretical calculations are utilized to visualize the dynamic conversion between localized and free electrons, as well as the relaxation processes and high‐density magnetic coupling at the nanoscale. These phenomena are rarely observed in micron‐scale or non‐hierarchical heterostructures. These improvements lead to significantly enhanced magnetic and dielectric properties, allowing for efficient interaction with high‐frequency electromagnetic (EM) fields, as indicated by a loss of bandwidth covering the full C‐band. Future work will explore constructing these interfaces with targeted materials to examine new properties, such as topological behavior, ferrimagnetism, and giant magnetoresistance, with applications in sustainability and optoelectronic technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助1111采纳,获得10
4秒前
orixero应助aqaqaqa采纳,获得10
4秒前
5秒前
NCNST-shi完成签到,获得积分10
5秒前
FashionBoy应助elooo采纳,获得10
6秒前
缥缈耷完成签到,获得积分10
9秒前
Leisure_Lee完成签到,获得积分10
9秒前
英姑应助Jyouang采纳,获得10
9秒前
Ophelia完成签到,获得积分10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
情怀应助ZZDXXX采纳,获得10
10秒前
10秒前
iY完成签到 ,获得积分10
11秒前
12秒前
凹凸先森应助伤心女大采纳,获得10
12秒前
鲤鱼树叶发布了新的文献求助10
13秒前
13秒前
你好完成签到 ,获得积分10
13秒前
科研通AI2S应助红炉点血采纳,获得10
14秒前
17秒前
aqaqaqa发布了新的文献求助10
17秒前
蒋j完成签到,获得积分10
17秒前
ZZDXXX发布了新的文献求助10
21秒前
21秒前
23秒前
sukai发布了新的文献求助30
24秒前
竹叶听清完成签到,获得积分10
24秒前
24秒前
26秒前
26秒前
贝贝贝完成签到,获得积分10
26秒前
27秒前
27秒前
wax应助mucheng采纳,获得10
28秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329637
求助须知:如何正确求助?哪些是违规求助? 2959215
关于积分的说明 8594828
捐赠科研通 2637692
什么是DOI,文献DOI怎么找? 1443719
科研通“疑难数据库(出版商)”最低求助积分说明 668843
邀请新用户注册赠送积分活动 656278