已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Metagenomic exploration and computational prediction of novel enzymes for polyethylene terephthalate degradation

基因组 降级(电信) 聚对苯二甲酸乙二醇酯 生物降解 化学 环境化学 生化工程 计算生物学 环境科学 生物 计算机科学 生物化学 材料科学 有机化学 基因 工程类 复合材料 电信
作者
Donya Afshar Jahanshahi,Mohammad Reza Rezaei Barzani,Mohammad Bahram,Shohreh Ariaeenejad,Kaveh Kavousi
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier]
卷期号:289: 117640-117640
标识
DOI:10.1016/j.ecoenv.2024.117640
摘要

As a global environmental challenge, plastic pollution raises serious ecological and health concerns owing to the excessive accumulation of plastic waste, which disrupts ecosystems, harms wildlife, and threatens human health. Polyethylene terephthalate (PET), one of the most commonly used plastics, has contributed significantly to this growing crisis. This study offers a solution for plastic pollution by identifying novel PET-degrading enzymes. Using a combined approach of computational analysis and metagenomic workflow, we identified a diverse array of genes and enzymes linked to plastic degradation. Our study identified 1305,282 unmapped genes, 36,000 CAZymes, and 317 plastizymes in the soil samples were heavily contaminated with plastic. We extended our approach by training machine learning models to discover candidate PET-degrading enzymes. To overcome the scarcity of known PET-degrading enzymes, we used a Generative Adversarial Network (GAN) model for dataset augmentation and a pretrained deep Evolutionary Scale Language Model (ESM) to generate sequence embeddings for classification. Finally, 21 novel PET-degrading enzymes were identified. These enzymes were further validated through active site analysis, amino acid composition analysis, and 3D structure comparison. Additionally, we isolated bacterial strains from contaminated soils and extracted plastizymes to demonstrate their potential for environmental remediation. This study highlights the importance of biotechnological solutions for plastic pollution, emphasizing scalable, cost-effective processes and the integration of computational and metagenomic methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豪hao发布了新的文献求助10
1秒前
沙拉发布了新的文献求助10
2秒前
赘婿应助斯文可仁采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
Tanyang应助科研通管家采纳,获得20
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
慕青应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
团子完成签到 ,获得积分10
6秒前
田様应助球球了采纳,获得10
7秒前
7秒前
8秒前
小马甲应助沙拉采纳,获得10
9秒前
学霸宇大王完成签到 ,获得积分10
9秒前
9秒前
独一无二发布了新的文献求助10
10秒前
liangjiangbo完成签到,获得积分10
11秒前
景胜杰发布了新的文献求助10
12秒前
JJ发布了新的文献求助10
13秒前
杳鸢应助陶醉薯片采纳,获得10
14秒前
14秒前
失眠灭男发布了新的文献求助10
15秒前
15秒前
mingming1028发布了新的文献求助10
18秒前
20秒前
20秒前
迅速曲奇发布了新的文献求助10
21秒前
23秒前
CodeCraft应助mingming1028采纳,获得10
25秒前
25秒前
syyw2021发布了新的文献求助10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497125
求助须知:如何正确求助?哪些是违规求助? 3081708
关于积分的说明 9169059
捐赠科研通 2774847
什么是DOI,文献DOI怎么找? 1522615
邀请新用户注册赠送积分活动 706128
科研通“疑难数据库(出版商)”最低求助积分说明 703222