亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of biomarkers for knee osteoarthritis through clinical data and machine learning models

Lasso(编程语言) 人工智能 支持向量机 机器学习 特征选择 接收机工作特性 朴素贝叶斯分类器 计算机科学 逻辑回归 随机森林 决策树 预测建模 弹性网正则化 万维网
作者
Wei Chen,Haotian Zheng,Binglin Ye,Tianxiao Guo,Yude Xu,Zhibin Fu,Xing Ji,Xiping Chai,Shenghua Li,Qiang Deng
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-85945-9
摘要

Knee osteoarthritis (KOA) represents a progressive degenerative disorder characterized by the gradual erosion of articular cartilage. This study aimed to develop and validate biomarker-based predictive models for KOA diagnosis using machine learning techniques. Clinical data from 2594 samples were obtained and stratified into training and validation datasets in a 7:3 ratio. Key clinical features were identified through differential analysis between KOA and control groups, combined with least absolute shrinkage and selection operator (LASSO) regression. The SHapley Additive Planning (SHAP) method was employed to rank feature importance quantitatively. Based on these rankings, predictive models were constructed using Logistic Regression (LR), Random Forest (RF), eXtreme Gradient Boosting (xGBoost), Naive Bayes (NB), Support Vector Machine (SVM), and Decision Tree (DT) algorithms. Models were developed for subsets of variables, including the top 5, top 10, top 15, and all identified features. Receiver operating characteristic (ROC) curves were applied to compare diagnostic performance across models. Additionally, a risk stratification framework for KOA prediction was designed using recursive partitioning analysis (RPA). Using difference analysis and LASSO, 44 critical clinical features were identified. Among these, age, plasma prothrombin time, gender, body mass index (BMI), and prothrombin time and international normalized ratio (PTINR) emerged as the top five features, with SHAP values of 0.1990, 0.0981, 0.0471, 0.0433, and 0.0422, respectively. Machine learning analysis demonstrated that these variables provided robust diagnostic performance for KOA. In the training set, area under the curve (AUC) values for LR, RF, xGBoost, NB, SVM, and DT models were 0.947, 0.961, 0.892, 0.952, 0.885, and 0.779, respectively. Similarly, in the validation dataset, these models achieved AUC values of 0.961, 0.943, 0.789, 0.957, 0.824, and 0.76. Among them, RF consistently exhibited superior diagnostic accuracy for KOA. Additionally, RPA analysis indicated a higher prevalence of KOA among individuals aged 54 years and older. The integration of the top five clinical variables significantly enhanced the diagnostic accuracy for KOA, particularly when employing the RF model. Moreover, the RPA model offered valuable insights to assist clinicians in refining prognostic assessments and optimizing clinical decision-making processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
YUYUYU完成签到 ,获得积分10
9秒前
26秒前
zho发布了新的文献求助10
45秒前
耿舒婷完成签到,获得积分10
49秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
bkagyin应助就看看采纳,获得10
1分钟前
爱学习完成签到,获得积分20
1分钟前
尼古拉斯大唯完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Zhouyang发布了新的文献求助10
1分钟前
zho发布了新的文献求助10
1分钟前
爱科研发布了新的文献求助10
2分钟前
大鱼完成签到,获得积分20
2分钟前
斯文败类应助爱科研采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
激情的学者完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
zho发布了新的文献求助10
3分钟前
3分钟前
烟雾里完成签到 ,获得积分10
4分钟前
4分钟前
爱科研发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
pp发布了新的文献求助10
5分钟前
5分钟前
科目三应助pp采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
SciGPT应助科研通管家采纳,获得10
5分钟前
爱科研完成签到,获得积分10
5分钟前
6分钟前
6分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388430
求助须知:如何正确求助?哪些是违规求助? 3000764
关于积分的说明 8793674
捐赠科研通 2686885
什么是DOI,文献DOI怎么找? 1471937
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313