Medical large language models are vulnerable to data-poisoning attacks

误传 计算机科学 危害 互联网 互联网隐私 计算机安全 医疗保健 数据科学 心理学 万维网 政治学 社会心理学 法学
作者
Daniel Alber,Zihao Yang,Anton Alyakin,Eunice Yang,N. Shesh,Aly Valliani,Jeff Zhang,Gabriel R. Rosenbaum,Ashley K. Amend-Thomas,David B. Kurland,C. Kremer,Alexander Eremiev,Bruck Negash,Daniel D. Wiggan,M. Nakatsuka,Karl L. Sangwon,Sean N. Neifert,Hammad A. Khan,Akshay Save,Adhith Palla,Eric A. Grin,Monika Hedman,Mustafa Nasir-Moin,Xujin Chris Liu,Lavender Yao Jiang,Michal Mankowski,Dorry L. Segev,Yindalon Aphinyanaphongs,Howard A. Riina,John G. Golfinos,Daniel A. Orringer,Douglas Kondziolka,Eric K. Oermann
出处
期刊:Nature Medicine [Nature Portfolio]
标识
DOI:10.1038/s41591-024-03445-1
摘要

The adoption of large language models (LLMs) in healthcare demands a careful analysis of their potential to spread false medical knowledge. Because LLMs ingest massive volumes of data from the open Internet during training, they are potentially exposed to unverified medical knowledge that may include deliberately planted misinformation. Here, we perform a threat assessment that simulates a data-poisoning attack against The Pile, a popular dataset used for LLM development. We find that replacement of just 0.001% of training tokens with medical misinformation results in harmful models more likely to propagate medical errors. Furthermore, we discover that corrupted models match the performance of their corruption-free counterparts on open-source benchmarks routinely used to evaluate medical LLMs. Using biomedical knowledge graphs to screen medical LLM outputs, we propose a harm mitigation strategy that captures 91.9% of harmful content (F1 = 85.7%). Our algorithm provides a unique method to validate stochastically generated LLM outputs against hard-coded relationships in knowledge graphs. In view of current calls for improved data provenance and transparent LLM development, we hope to raise awareness of emergent risks from LLMs trained indiscriminately on web-scraped data, particularly in healthcare where misinformation can potentially compromise patient safety. Large language models can be manipulated to generate misinformation by poisoning of a very small percentage of the data on which they are trained, but a harm mitigation strategy using biomedical knowledge graphs can offer a method for addressing this vulnerability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好斓应助天空之城采纳,获得30
刚刚
123完成签到,获得积分10
刚刚
刻苦丝袜完成签到,获得积分10
1秒前
2秒前
小颉江二郎完成签到,获得积分10
2秒前
小尘埃完成签到,获得积分10
2秒前
ssaws完成签到 ,获得积分10
2秒前
认真宛发布了新的文献求助10
3秒前
伶俐鸽子发布了新的文献求助10
4秒前
科学家发布了新的文献求助10
5秒前
方大完成签到 ,获得积分10
5秒前
可爱的函函应助Yola采纳,获得10
6秒前
sun发布了新的文献求助10
6秒前
tsm完成签到,获得积分10
6秒前
Parsifal完成签到,获得积分10
7秒前
香蕉觅云应助终陌采纳,获得10
7秒前
木木完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
Xiao10105830完成签到,获得积分10
9秒前
obaica完成签到,获得积分10
10秒前
10秒前
10秒前
不安的可乐完成签到,获得积分10
11秒前
iffy完成签到,获得积分10
11秒前
夜宵完成签到,获得积分10
12秒前
乐只完成签到,获得积分10
12秒前
LLL完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
嘟嘟喂嘟嘟应助朴实的杰采纳,获得10
12秒前
ccc给ccc的求助进行了留言
12秒前
冰刀完成签到,获得积分10
12秒前
mzc发布了新的文献求助10
13秒前
sunnyqqz完成签到,获得积分10
13秒前
大恩区完成签到,获得积分10
13秒前
Egoist完成签到,获得积分10
14秒前
14秒前
15秒前
LZQ921完成签到,获得积分10
15秒前
盘尼西林发布了新的文献求助10
15秒前
zkkz完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259