Feasibility Study on Optimising the Efficacy of a Population Age Estimation Model for South China by Combined Machine Learning for the Second and Third Molars

估计 随机森林 机器学习 投票 人口 统计 中国 计算机科学 青少年犯罪 标准误差 人工智能 数学 人口学 医学 地理 法学 工程类 精神科 社会学 考古 政治 系统工程 政治学
作者
Zihong Zeng,Xuelian Cheng,Chiyuan Feng,Weijie Shan,Zhijing Xu,Mingyu Xie,Guoan Tang,Yan Zhang,Xia Yue
标识
DOI:10.1007/s10278-024-01382-6
摘要

Dental age estimation, as an important part of forensic anthropology, has a wide range of applications for its results in legal practice. Given the lowered legal age for criminal responsibility in China and the increasing juvenile delinquency, we establish a morphological database targeting the second (M2) and third molars (M3) of the Southern Chinese population. Full mouth orthopantomography from 1486 individuals aged 8.00 to 24.99 years were collected and categorized into five age groups, comprising four age nodes: 12, 14, 16 and 18 years. The Demirjian method assesses M2 and M3 development, and stepwise regression analysis confirms M2's suitability for age estimation. Advanced ML algorithms, such as Random Forest (RF) and Support Vector Machine, are implemented to fit a classification model, evaluated by accuracy. Ultimately, we constructed age estimation models employing techniques such as Decision Trees, AdaBoost, and Voting methods, and assessed their performance using metrics like the mean absolute error (MAE). Among the age estimation models based on different age groups, the Voting model exhibited the most optimal performance, with an average MAE of 0.7207. The estimation model for the 12–14 age group has the highest accuracy, with an average MAE of 0.5081. The RF model has the highest accuracy in the age estimation model for the 12–14 age group, with an MAE of 0.4248. This study effectively integrates multiple ML algorithms to enhance the precision of dental age estimation using M2 and M3, providing a robust method and predictive scheme for forensic practices in ascertaining the age of criminal responsibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴军霄完成签到,获得积分10
刚刚
淡然葶完成签到 ,获得积分10
刚刚
拼命十三娘完成签到,获得积分10
1秒前
Survivor完成签到,获得积分10
2秒前
2秒前
2秒前
云女士关注了科研通微信公众号
2秒前
jj发布了新的文献求助10
3秒前
深情安青应助fffxj采纳,获得10
3秒前
张国栋发布了新的文献求助10
3秒前
caigou完成签到,获得积分10
3秒前
4秒前
4秒前
艺馨完成签到,获得积分10
6秒前
清凉一夏发布了新的文献求助10
7秒前
受戒发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
毛毛发布了新的文献求助10
9秒前
tlggg完成签到,获得积分10
10秒前
11秒前
大个应助叮叮当当当采纳,获得10
11秒前
12秒前
徐洲发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
vokda完成签到 ,获得积分10
14秒前
暖心人士完成签到 ,获得积分10
14秒前
14秒前
goldNAN完成签到,获得积分10
14秒前
NexusExplorer应助fuchao采纳,获得10
15秒前
清辉月凝发布了新的文献求助10
15秒前
研究啥发布了新的文献求助10
15秒前
zhanghao发布了新的文献求助10
15秒前
外向半梦关注了科研通微信公众号
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637511
求助须知:如何正确求助?哪些是违规求助? 4743448
关于积分的说明 14999325
捐赠科研通 4795636
什么是DOI,文献DOI怎么找? 2562096
邀请新用户注册赠送积分活动 1521574
关于科研通互助平台的介绍 1481559