Feasibility Study on Optimising the Efficacy of a Population Age Estimation Model for South China by Combined Machine Learning for the Second and Third Molars

估计 随机森林 机器学习 投票 人口 统计 中国 计算机科学 青少年犯罪 标准误差 人工智能 数学 人口学 医学 地理 法学 工程类 精神科 社会学 考古 政治 系统工程 政治学
作者
Zihong Zeng,Xuelian Cheng,Chiyuan Feng,Weijie Shan,Zhijing Xu,Mingyu Xie,Guoan Tang,Yan Zhang,Xia Yue
标识
DOI:10.1007/s10278-024-01382-6
摘要

Dental age estimation, as an important part of forensic anthropology, has a wide range of applications for its results in legal practice. Given the lowered legal age for criminal responsibility in China and the increasing juvenile delinquency, we establish a morphological database targeting the second (M2) and third molars (M3) of the Southern Chinese population. Full mouth orthopantomography from 1486 individuals aged 8.00 to 24.99 years were collected and categorized into five age groups, comprising four age nodes: 12, 14, 16 and 18 years. The Demirjian method assesses M2 and M3 development, and stepwise regression analysis confirms M2's suitability for age estimation. Advanced ML algorithms, such as Random Forest (RF) and Support Vector Machine, are implemented to fit a classification model, evaluated by accuracy. Ultimately, we constructed age estimation models employing techniques such as Decision Trees, AdaBoost, and Voting methods, and assessed their performance using metrics like the mean absolute error (MAE). Among the age estimation models based on different age groups, the Voting model exhibited the most optimal performance, with an average MAE of 0.7207. The estimation model for the 12–14 age group has the highest accuracy, with an average MAE of 0.5081. The RF model has the highest accuracy in the age estimation model for the 12–14 age group, with an MAE of 0.4248. This study effectively integrates multiple ML algorithms to enhance the precision of dental age estimation using M2 and M3, providing a robust method and predictive scheme for forensic practices in ascertaining the age of criminal responsibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cy完成签到,获得积分10
1秒前
1秒前
2秒前
博修发布了新的文献求助10
2秒前
3秒前
4秒前
桐桐应助小豆芽采纳,获得20
4秒前
整齐荟发布了新的文献求助10
5秒前
cy发布了新的文献求助10
5秒前
5秒前
quora发布了新的文献求助10
6秒前
6秒前
咕噜坚果发布了新的文献求助10
7秒前
鳗鱼小丸子完成签到 ,获得积分10
8秒前
魔幻安筠发布了新的文献求助10
8秒前
8秒前
Zhangfu完成签到,获得积分10
9秒前
李星发布了新的文献求助10
9秒前
123完成签到 ,获得积分10
10秒前
fairy发布了新的文献求助10
10秒前
my123发布了新的文献求助10
11秒前
共享精神应助小小怪采纳,获得10
13秒前
鹿阿布发布了新的文献求助10
13秒前
张利双发布了新的文献求助10
14秒前
U9A发布了新的文献求助10
14秒前
orixero应助文献查找采纳,获得10
15秒前
李星完成签到,获得积分20
17秒前
18秒前
李明涵完成签到 ,获得积分10
18秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI5应助博修采纳,获得10
19秒前
Rondab应助科研通管家采纳,获得30
19秒前
科研通AI5应助学术版7e采纳,获得10
19秒前
Akim应助科研通管家采纳,获得30
20秒前
20秒前
Rondab应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578