血管平滑肌
ADAM10型
脑动脉
医学
创伤性脑损伤
病理
淀粉样前体蛋白
病态的
β淀粉样蛋白
内科学
金属蛋白酶
阿尔茨海默病
基质金属蛋白酶
平滑肌
疾病
精神科
去整合素
作者
Ílknur Özen,Sami Abu Hamdeh,Karsten Ruscher,Niklas Marklund
标识
DOI:10.1007/s00401-025-02848-9
摘要
Abstract Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer’s-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated. Here, we show that acute human TBI resulted in early pathological changes in leptomeningeal arteries, closely associated with a decrease in VSMC markers such as NOTCH3 and alpha smooth muscle actin (α-SMA).These changes coincided with increased aggregation of variable-length amyloid peptides including Aβ 1-40/42, Aβ 1-16, and β-secretase-derived fragment (βCTF) (C99) caused by altered processing of amyloid precursor protein (APP) in VSMCs. The aggregation of Aβ 1-40/42 peptides were also observed in the leptomeningeal arteries of young TBI patients. These pathological changes also included higher β-secretase (BACE1) when compared to α-secretase A Disintegrin And Metalloprotease 10 (ADAM10) expression in the leptomeningeal arteries, plausibly caused by hypoxia and oxidative stress as shown using human VSMCs in vitro. Importantly, BACE1 inhibition not only restored NOTCH3 signalling but also normalized ADAM10 levels in vitro. Furthermore, we found reduced ADAM10 activity and decreased NOTCH3, along with increased βCTF (C99) levels in mice subjected to an experimental model of TBI. This study provides evidence of early post-injury changes in VSMCs of leptomeningeal arteries that can contribute to vascular dysfunction and exacerbate secondary injury mechanisms following TBI.
科研通智能强力驱动
Strongly Powered by AbleSci AI