Recovery Patterns

医学 中胚层 聚类分析 相伴的 星团(航天器) 物理疗法 外科 人工智能 计算机科学 程序设计语言
作者
Daan Toben,Astrid de Wind,Eva van der Meij,Judith A.F. Huirne,Mark Hoogendoorn,Johannes R. Anema
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/sla.0000000000006671
摘要

Background: A rise in the proportion of day surgery has seen a concomitant increase in the proportion of patients recovering at home. Blended eHealth is well situated to provide this group with medical support and supervision. However, a data-driven description of the heterogeneity is missing. Objective: To identify clinically meaningful patterns of functional recovery following abdominal surgery and describe how the emergent patient characteristics differ between them. Methods: This was a secondary data analysis of two datasets collected through two previously conducted RCTs. We used k-medoids clustering and Growth Mixture Modelling on the longitudinal patient reported outcome measurement information system (PROMIS) physical function (PF) t-scores of 649 patients. Differences in patient characteristics between the resultant clusters were identified through statistical tests. Results: Three clusters – fast, intermediate and uneven recovery - were identified regardless of the dataset or statistical technique. A fourth cluster – relapse – was identified by both statistical techniques but only in the presence of heavy surgery. The fifth and sixth clusters – low gain and high gain – were identified for both light and heavy surgery, but only through k-medoids clustering. Conclusions: Trajectories of physical function following abdominal surgery are heterogenous but distinct clinically meaningful patterns can be extracted. This classification may facilitate shared-decision making during pre-operative care and future research may utilize them as targets for prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vigor完成签到 ,获得积分10
刚刚
刚刚
1秒前
逗逗发布了新的文献求助10
1秒前
orixero应助Iris采纳,获得10
1秒前
1秒前
鹅鹅完成签到 ,获得积分10
1秒前
hard完成签到,获得积分10
2秒前
CocoGabrielle完成签到,获得积分10
2秒前
2秒前
的奖学金喜欢喜欢大呼小叫难受完成签到 ,获得积分10
3秒前
ABC的FGH发布了新的文献求助10
3秒前
3秒前
思源应助韩妙采纳,获得10
3秒前
研友_8yN60L完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
子晏发布了新的文献求助10
5秒前
wuyoucaoxin完成签到,获得积分10
6秒前
直率初露发布了新的文献求助10
6秒前
yc发布了新的文献求助10
7秒前
科研通AI2S应助lidd采纳,获得10
7秒前
fff完成签到,获得积分10
7秒前
平淡惋清发布了新的文献求助10
8秒前
8秒前
8秒前
小窝发布了新的文献求助10
8秒前
Akim应助itharmony采纳,获得10
9秒前
czt完成签到,获得积分10
9秒前
ZHa0发布了新的文献求助10
9秒前
9秒前
Selina完成签到 ,获得积分10
9秒前
10秒前
冷傲的书兰完成签到,获得积分10
10秒前
无敌小狐发布了新的文献求助10
11秒前
外向的鑫完成签到,获得积分10
11秒前
包佳梁发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
dbb发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342