Recovery Patterns

医学 中胚层 聚类分析 相伴的 星团(航天器) 物理疗法 外科 人工智能 计算机科学 程序设计语言
作者
Daan Toben,Astrid de Wind,Eva van der Meij,Judith A.F. Huirne,Mark Hoogendoorn,Johannes R. Anema
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/sla.0000000000006671
摘要

Background: A rise in the proportion of day surgery has seen a concomitant increase in the proportion of patients recovering at home. Blended eHealth is well situated to provide this group with medical support and supervision. However, a data-driven description of the heterogeneity is missing. Objective: To identify clinically meaningful patterns of functional recovery following abdominal surgery and describe how the emergent patient characteristics differ between them. Methods: This was a secondary data analysis of two datasets collected through two previously conducted RCTs. We used k-medoids clustering and Growth Mixture Modelling on the longitudinal patient reported outcome measurement information system (PROMIS) physical function (PF) t-scores of 649 patients. Differences in patient characteristics between the resultant clusters were identified through statistical tests. Results: Three clusters – fast, intermediate and uneven recovery - were identified regardless of the dataset or statistical technique. A fourth cluster – relapse – was identified by both statistical techniques but only in the presence of heavy surgery. The fifth and sixth clusters – low gain and high gain – were identified for both light and heavy surgery, but only through k-medoids clustering. Conclusions: Trajectories of physical function following abdominal surgery are heterogenous but distinct clinically meaningful patterns can be extracted. This classification may facilitate shared-decision making during pre-operative care and future research may utilize them as targets for prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
个性的南珍完成签到 ,获得积分10
1秒前
桃子e发布了新的文献求助10
3秒前
午凌二完成签到,获得积分10
3秒前
4秒前
5秒前
Lychee完成签到 ,获得积分10
6秒前
HMethod完成签到 ,获得积分10
6秒前
小胖发布了新的文献求助10
6秒前
7秒前
SCI66发布了新的文献求助30
7秒前
nessa发布了新的文献求助10
9秒前
爆米花应助CRUISE采纳,获得10
10秒前
木悠发布了新的文献求助10
11秒前
壮观人达完成签到,获得积分10
11秒前
LDoll完成签到,获得积分10
12秒前
桃子e完成签到,获得积分10
12秒前
Lee发布了新的文献求助10
14秒前
15秒前
lt发布了新的文献求助10
16秒前
Lqian_Yu完成签到 ,获得积分10
17秒前
SCI66完成签到,获得积分10
20秒前
小胖发布了新的文献求助10
21秒前
Glufo完成签到,获得积分10
22秒前
英姑应助小慧儿采纳,获得10
23秒前
24秒前
领导范儿应助科研通管家采纳,获得10
25秒前
千千沐发布了新的文献求助10
25秒前
Lee完成签到,获得积分10
25秒前
light发布了新的文献求助50
26秒前
qwer发布了新的文献求助50
27秒前
27秒前
优秀的元龙完成签到,获得积分10
29秒前
32秒前
碧蓝平露发布了新的文献求助10
32秒前
凶狠的飞凤完成签到,获得积分10
33秒前
SBoot完成签到,获得积分10
33秒前
34秒前
HAAAPY完成签到,获得积分20
37秒前
keikei发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578