Machine learning-based identification of co-expressed genes in prostate cancer and CRPC and construction of prognostic models

前列腺癌 鉴定(生物学) 基因 癌症 前列腺 计算生物学 生物信息学 医学 计算机科学 生物 内科学 遗传学 生态学
作者
Fan Changhui,Zhiheng Huang,Xu Han,Tianhe Zhang,Haiyang Wei,Junfeng Gao,Changbao Xu,Fan Changhui
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-90444-y
摘要

The objective of this study was to employ machine learning to identify shared differentially expressed genes (DEGs) in prostate cancer (PCa) initiation and castration resistance, aiming to establish a robust prognostic model and enhance understanding of patient prognosis for personalized treatment strategies. mRNA transcriptome data associated with Castration-Resistant Prostate Cancer (CRPC) were obtained from the GEO database. Differential expression analysis was conducted using the limma R package to compare normal prostate samples with PCa samples, and PCa samples with CRPC samples. Next, we applied LASSO regression, univariate, and multivariate COX regression analyses to pinpoint genes linked to prognosis and build prognostic models. Validation was performed using the TCGA_PRAD dataset to confirm expression differences of hub genes and explore their correlation with clinical variables and prognostic significance. We successfully established a prostate cancer risk prognostic model containing seven genes (KIF4A, UBE2C, FAM72D, CCDC78, HOXD9, LIX1 and SLC5A8) and verified its accuracy on an independent data set. The results of calibration curve and decision curve show that the model has potential clinical application value. The nomogram can accurately predict the prognosis of patients. Additionally, elevated expression of KIF4A, UBE2C, and FAM72D, or reduced expression of LIX1, correlated with advanced pathological T and N stages, clinical T stage, prostate-specific antigen (PSA) level, age at diagnosis, Gleason score, and shorter progression-free interval (PFI) (P < 0.05). By integrating bioinformatics analysis and clinical data, we not only established a reliable prognostic model for prostate cancer but also identified key genes pivotal in disease progression and treatment resistance. These findings provide novel insights and methodologies for assessing prognosis and tailoring treatment strategies for prostate cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥膘肘子发布了新的文献求助10
1秒前
彭于晏应助车车采纳,获得10
1秒前
xhl发布了新的文献求助10
1秒前
2秒前
psy完成签到,获得积分10
3秒前
3秒前
林也完成签到,获得积分20
4秒前
柠檬完成签到 ,获得积分10
4秒前
明理的蜗牛完成签到,获得积分10
4秒前
4秒前
路途发布了新的文献求助10
4秒前
科研通AI5应助wkf218416采纳,获得10
6秒前
hakunamatata完成签到,获得积分10
7秒前
科研小白完成签到,获得积分20
8秒前
玠岚发布了新的文献求助10
8秒前
rot完成签到 ,获得积分10
8秒前
无忧sxt完成签到 ,获得积分10
8秒前
CNY完成签到 ,获得积分10
8秒前
qingzhiwu发布了新的文献求助10
9秒前
36456657应助灬灬采纳,获得10
11秒前
xxf1002完成签到 ,获得积分10
11秒前
万能图书馆应助夜猫放羊采纳,获得10
11秒前
13秒前
Hello应助肥膘肘子采纳,获得10
13秒前
lisali完成签到,获得积分10
13秒前
搜集达人应助奋斗的秋珊采纳,获得10
14秒前
14秒前
毅力鸟完成签到,获得积分10
15秒前
15秒前
zeng完成签到,获得积分10
15秒前
CY完成签到,获得积分20
15秒前
谨言发布了新的文献求助10
16秒前
16秒前
16秒前
Hello应助粥粥爱糊糊采纳,获得10
16秒前
17秒前
20秒前
大模型应助Lin采纳,获得10
20秒前
Alexbirchurros完成签到 ,获得积分10
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541088
求助须知:如何正确求助?哪些是违规求助? 3118305
关于积分的说明 9334710
捐赠科研通 2816099
什么是DOI,文献DOI怎么找? 1548234
邀请新用户注册赠送积分活动 721301
科研通“疑难数据库(出版商)”最低求助积分说明 712678