已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Brassinosteroids enhance gibberellic acid biosynthesis to promote cotton fibre cell elongation

赤霉素 延伸率 生物 生物合成 赤霉素 植物 细胞生物学 生物化学 发芽 基因 材料科学 极限抗拉强度 冶金
作者
Liyong Hou,Liping Zhu,Miaomiao Hao,Yufei Liang,Guanghui Xiao
出处
期刊:Plant Biotechnology Journal [Wiley]
标识
DOI:10.1111/pbi.14579
摘要

Cotton serves as not only a crucial natural textile crop, with cotton fibre accounting for approximately 95% of fibre usage in the textile industry but also a valuable model for the investigation of plant cell elongation (Cao et al., 2020; Wang et al., 2019). The plant hormones brassinosteroid (BR) and gibberellic acid (GA) promote fibre cell development (He et al., 2024; Huang et al., 2021; Shan et al., 2014; Zhu et al., 2023). Despite the positive role of BR and GA in fibre cell development that has been reported, the cross-talk between BR and GA biosynthesis pathway and signalling pathway in fibre growth remains largely unknown. In this study, our results reveal that BR stimulates GA biosynthesis during fibre elongation in cotton. BR and GA considerably promote cotton fibre development, whereas their respective inhibitors, brassinazole (BRZ, a BR biosynthesis inhibitor) and paclobutrazol (PAC, a GA biosynthesis inhibitor), impede fibre growth (Yang et al., 2023; Zhu et al., 2022). To explore the potential regulatory mechanisms between BR and GA, we treated wild-type (WT) ovules to with BR, BRZ, GA3, and PAC using an in vitro ovule culture system. Our observations reveal that BR and GA improved fibre development, and BRZ and PAC impeded it. In addition, GA3 mitigated the inhibitory effects of BRZ on fibre development, whereas PAC treatment considerably inhibited the fibre-promoting effect of BR Figure 1a,b. Moreover, the GA levels were increased after the BR treatment and decreased after the BRZ treatment (ovule with fibres; Figure 1c). BES1 (Gh_D02G0939) is the critical regulator in BR signalling (Zhu et al., 2023). Overexpression of BES1 notably stimulated the GA content in fibres (Figure 1d), accompanied with the considerably increased fibre length (Figure 1e,f and S1a,b). PAC significantly inhibited the promotion of fibre length after BES1 overexpression (Figure S2a,b). These results suggest that BR acts upstream of GA in the context of fibre development. In upland cotton, we identified 26 GA synthesis genes and 15 of them harboured BES1 binding site (E-box cis-element) in their promoters. The interaction between BES1 and 15 candidate gene promoters was investigated using yeast one-hybrid assay. As a result, BES1 was able to interact with two gene promoters (pGA20OX1D and pGA3OX1D) (Figure 1g). The tobacco dual-luciferase assay demonstrated that BES1 activated the promoters of GA20OX1D and GA3OX1D, which resulted in enhanced expression of LUC gene (Figures 1h,i and S3a,b). The promoters of GA20OX1D and GA3OX1D were segmented into three fragments based on the distribution of E-box cis-elements. BES1 was found to specifically bind to the P2 and F3 fragments of the GA20OX1D and GA3OX1D promoters, respectively (Figures S4 and S5a–d). Notably, this binding interaction was abolished upon mutation of the first E-box within the P2 or F3 fragments (Figures S4 and S5e–h). Furthermore, the electrophoretic mobility shift assay revealed the specific binding affinity of BES1 to pGA20OX1D-L1 and pGA3OX1D-L2 fragments with the E-box (Figure 1j,k). In addition, competitive binding probes, without biotin, considerably reduced the binding of BES1 protein to pGA20OX1D-L1 and pGA3OX1D-L2, respectively (Figure 1l,m). Moreover, chromatin immunoprecipitation (ChIP) followed by sequencing and ChIP-quantitative PCR (qPCR) analysis demonstrated that BES1 was selectively recruited to the promoter fragments that contain the E-box (Figure S6a–d). The expression levels of GA20OX1D and GA3OX1D in fibres were significantly increased after BR treatment or overexpression of BES1, and decreased after BRZ treatment or knockout of BES1 (Figure S7a–d). Furthermore, the expression levels of GA20OX1D and GA3OX1D were increased during cotton fibre development, suggesting the functional roles of these genes in fibre cell development (Figure S7e,f). To further investigate the roles of GA20OX1D and GA3OX1D in cotton fibre development, GA20OX1D and GA3OX1D transgenic cotton plants were generated (Figure S8a–f). Furthermore, we detected the GA content in GA20OX1D and GA3OX1D transgenic cotton fibres and found that overexpression of GA20OX1D or GA3OX1D increased GA accumulation (Figure S9a,b). The fibre length was substantially increased in GA20OX1D or GA3OX1D overexpression plants and significantly decreased in knockout lines (Figure 1n–q). In addition, the cell wall thickness of fibres was largely enhanced in GA3OX1D overexpression lines and reduced in GA3OX1D knockout lines (Figures 1r–u and S10a,b). However, the cell wall thickness of fibres from GA20OX1D transgenic lines was comparable with that from WT plants (Figure S10c–h). More importantly, exogenous application of GA3 successfully rescued the short fibre phenotype resulted from the mutation of GA20OX1D or GA3OX1D. Conversely, PAC inhibited the promotion of fibre elongation led by the overexpression of GA20OX1D or GA3OX1D (Figure S11a–d). Previous studies indicate that GA facilitates cotton fibre elongation by enhancing the biosynthesis of very long-chain fatty acids (VLCFAs) (He et al., 2024; Tian et al., 2022; Xiao et al., 2016). We speculate that GA20OX1D and GA3OX1D may enhance fibre elongation by regulating the biosynthesis of VLCFAs. Collectively, our results illustrate that BR modulates the transcription of GA20OX1D and GA3OX1D via BES1, which in turn regulates GA biosynthesis to facilitate fibre development (Figure 1v). This work was supported by the National Key Research and Development Program of China (2022YFF1002000), the National Natural Science Foundation of China (32270578, 32070549, 32200444 and 32470574), the Xinjiang Production and Construction Corps Key Field Science and Technology Research and Development Plan (KC00310501), the Science and Technology Innovation Team of Shaanxi Provincial Department of Science and Technology (2024RS-CXTD-72), the Scientific Research Project of Shaanxi Academy of Basic Sciences (22JHQ086), the Hong Kong Scholars Program (XJ2023014) and the Natural Science Basic Research Program of Shaanxi Province (2024JC-YBQN-0222, 2024JC-YBQN-0228). Shaanxi Postdoctoral Research Funding Project (2023BSHEDZZ206). The authors declare no conflict of interest. XGH conceived the research. HLY carried out the experiments. HLY, ZLP, HMM and LYF analysed the data. ZLP, HLY and XGH prepared the manuscript. All authors read and approved of the manuscript. The data that supports this study are available in the Supplementary Information of this article. Figure S1 Identification of the BES1 overexpression lines. Figure S2 Phenotype of cotton fibers from wild type and BES1 overexpression plants treated with GA3 or PAC. Figure S3 Quantification of dual-luciferase assays of LUC expression. Figure S4 Systematic yeast one-hybrid assay showing the interaction between BES1 and GA20OX1D or GA3OX1D gene promoter. Figure S5 BES1 directly binds to GA20OX1D promoter and GA3OX1D promoter. Figure S6 ChIP-seq and ChIP-qPCR showing the binding activities of BES1 to the promoters of GA20OX1D and GA3OX1D. Figure S7 Relative expression of GA20OX1D and GA3OX1D. Figure S8 Identification of GA20OX1D and GA3OX1D transgenic lines. Figure S9 GA1 and GA4 content in fibers from wild type (WT), GA20OX1D and GA3OX1D overexpression (OE) and knockout (KO) lines. Figure S10 Cell wall thickness of mature fibers from wild type (WT), overexpression (OE) and knockout (KO) lines. Figure S11 Phenotype of cotton fibers from wild type (WT), overexpression (OE) and knockout (KO) lines treated with GA3 or PAC. Table S1 All primers used in this work. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lrid完成签到 ,获得积分10
2秒前
3秒前
星辰大海应助rudjs采纳,获得30
5秒前
大个应助独特的泥猴桃采纳,获得10
5秒前
insomnia417完成签到,获得积分0
6秒前
小二郎应助upcdelx采纳,获得100
7秒前
顺利墨镜发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
11完成签到 ,获得积分10
10秒前
李木子完成签到 ,获得积分10
10秒前
优雅苑睐完成签到,获得积分10
11秒前
wenlong完成签到 ,获得积分10
12秒前
Wish完成签到,获得积分10
12秒前
额123没名完成签到 ,获得积分10
13秒前
13秒前
你学习了吗我学不了一点完成签到 ,获得积分10
15秒前
16秒前
海洋完成签到 ,获得积分10
16秒前
萤lueluelue发布了新的文献求助10
18秒前
heyan完成签到,获得积分10
18秒前
bkagyin应助swh采纳,获得10
19秒前
潇洒的马里奥完成签到,获得积分10
19秒前
无所谓的啦完成签到,获得积分10
20秒前
20秒前
dolabmu完成签到 ,获得积分10
22秒前
kaka完成签到,获得积分0
23秒前
23秒前
LQX2141完成签到 ,获得积分10
24秒前
IfItheonlyone完成签到 ,获得积分10
25秒前
木又完成签到 ,获得积分10
26秒前
小二郎应助悦耳的小夏采纳,获得10
26秒前
Ania99完成签到 ,获得积分10
26秒前
Zhuzhu完成签到 ,获得积分10
29秒前
电冰箱完成签到 ,获得积分10
30秒前
ding应助顺利墨镜采纳,获得10
31秒前
32秒前
llk完成签到 ,获得积分10
32秒前
longge233233完成签到,获得积分10
32秒前
悦耳的小夏完成签到,获得积分10
32秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956932
求助须知:如何正确求助?哪些是违规求助? 3502968
关于积分的说明 11110867
捐赠科研通 3233954
什么是DOI,文献DOI怎么找? 1787676
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802223