ProtChat: An AI Multi-Agent for Automated Protein Analysis Leveraging GPT-4 and Protein Language Model

计算机科学 工作流程 预处理器 可用性 推论 软件工程 数据科学 人工智能 人机交互 数据库
作者
Huazhen Huang,X.-H. Shi,Hongyang Lei,Fan Hu,Yunpeng Cai
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (1): 62-70
标识
DOI:10.1021/acs.jcim.4c01345
摘要

Large language models (LLMs) have transformed natural language processing, enabling advanced human-machine communication. Similarly, in computational biology, protein sequences are interpreted as natural language, facilitating the creation of protein large language models (PLLMs). However, applying PLLMs requires specialized preprocessing and script development, increasing the complexity of their use. Researchers have integrated LLMs with PLLMs to develop automated protein analysis tools to address these challenges, simplifying analytical workflows. Existing technologies often require substantial human intervention for specific protein-related tasks, maintaining high barriers to implementing automated protein analysis systems. Here, we propose ProtChat, an AI multiagent system for protein analysis that integrates the inference capabilities of PLLMs with the task-planning abilities of LLMs. ProtChat integrates GPT-4 with multiple PLLMs, like ESM and MASSA, to automate tasks such as protein property prediction and protein–drug interactions without human intervention. This AI agent enables users to input instructions directly, significantly improving efficiency and usability, making it suitable for researchers without a computational background. Experiments demonstrate that ProtChat can automate complex protein tasks accurately, avoiding manual intervention and delivering results rapidly. This advancement opens new research avenues in computational biology and drug discovery. Future applications may extend ProtChat's capabilities to broader biological data analysis. Our code and data are publicly available at github.com/SIAT-code/ProtChat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搞怪的易槐完成签到,获得积分10
1秒前
张元东发布了新的文献求助10
1秒前
1秒前
打打应助最长的旅途采纳,获得10
2秒前
乐悠悠完成签到 ,获得积分10
3秒前
和谐的乌冬面完成签到,获得积分10
4秒前
我爱学习完成签到 ,获得积分10
5秒前
钙调蛋白发布了新的文献求助10
5秒前
勤劳涵山发布了新的文献求助10
5秒前
愚夫完成签到,获得积分10
5秒前
CipherSage应助洛苏采纳,获得10
5秒前
5秒前
高冷完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
8秒前
8秒前
点酒成诗完成签到,获得积分10
8秒前
寻雪完成签到,获得积分10
9秒前
怪蜀黍发布了新的文献求助10
10秒前
Azure完成签到 ,获得积分10
10秒前
10秒前
zzz发布了新的文献求助10
10秒前
11秒前
13秒前
香蕉觅云应助Npccc采纳,获得10
13秒前
suuting发布了新的文献求助10
14秒前
14秒前
程东霞发布了新的文献求助10
15秒前
smallcc完成签到,获得积分10
15秒前
16秒前
16秒前
叁拾肆完成签到 ,获得积分10
16秒前
怪蜀黍完成签到,获得积分10
18秒前
19秒前
zhouleiwang发布了新的文献求助10
19秒前
威海大雪完成签到 ,获得积分10
20秒前
77发布了新的文献求助10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753041
求助须知:如何正确求助?哪些是违规求助? 3296600
关于积分的说明 10094658
捐赠科研通 3011409
什么是DOI,文献DOI怎么找? 1653764
邀请新用户注册赠送积分活动 788434
科研通“疑难数据库(出版商)”最低求助积分说明 752827