Large Language Models vs Human for Classifying Clinical Documents

计算机科学 自然语言处理 情报检索 人工智能 数据科学
作者
Akram Mustafa,Usman Naseem,Mostafa Rahimi Azghadi
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:195: 105800-105800
标识
DOI:10.1016/j.ijmedinf.2025.105800
摘要

Accurate classification of medical records is crucial for clinical documentation, particularly when using the 10th revision of the International Classification of Diseases (ICD-10) coding system. The use of machine learning algorithms and Systematized Nomenclature of Medicine (SNOMED) mapping has shown promise in performing these classifications. However, challenges remain, particularly in reducing false negatives, where certain diagnoses are not correctly identified by either approach. This study explores the potential of leveraging advanced large language models to improve the accuracy of ICD-10 classifications in challenging cases of medical records where machine learning and SNOMED mapping fail. We evaluated the performance of ChatGPT 3.5 and ChatGPT 4 in classifying ICD-10 codes from discharge summaries within selected records of the Medical Information Mart for Intensive Care (MIMIC) IV dataset. These records comprised 802 discharge summaries identified as false negatives by both machine learning and SNOMED mapping methods, showing their challenging case. Each summary was assessed by ChatGPT 3.5 and 4 using a classification prompt, and the results were compared to human coder evaluations. Five human coders, with a combined experience of over 30 years, independently classified a stratified sample of 100 summaries to validate ChatGPT's performance. ChatGPT 4 demonstrated significantly improved consistency over ChatGPT 3.5, with matching results between runs ranging from 86% to 89%, compared to 57% to 67% for ChatGPT 3.5. The classification accuracy of ChatGPT 4 was variable across different ICD-10 codes. Overall, human coders performed better than ChatGPT. However, ChatGPT matched the median performance of human coders, achieving an accuracy rate of 22%. This study underscores the potential of integrating advanced language models with clinical coding processes to improve documentation accuracy. ChatGPT 4 demonstrated improved consistency and comparable performance to median human coders, achieving 22% accuracy in challenging cases. Combining ChatGPT with methods like SNOMED mapping could further enhance clinical coding accuracy, particularly for complex scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuan发布了新的文献求助10
刚刚
xuan发布了新的文献求助10
刚刚
xuan发布了新的文献求助10
刚刚
单于灵竹发布了新的文献求助10
1秒前
不来也不去完成签到 ,获得积分10
1秒前
1秒前
Ki完成签到,获得积分10
1秒前
刘锦涛完成签到,获得积分10
1秒前
2秒前
ZMR121121发布了新的文献求助10
2秒前
2秒前
马前人发布了新的文献求助30
3秒前
江十三完成签到,获得积分10
3秒前
3秒前
sunshine完成签到,获得积分10
3秒前
XUXU发布了新的文献求助10
3秒前
笑声像鸭子叫完成签到 ,获得积分10
4秒前
lJH完成签到,获得积分10
4秒前
林深完成签到,获得积分10
4秒前
4秒前
英俊的铭应助小黑马采纳,获得10
4秒前
sf完成签到,获得积分20
5秒前
simendl完成签到,获得积分10
5秒前
小李发布了新的文献求助10
5秒前
思源应助波波采纳,获得10
6秒前
zhhr发布了新的文献求助10
6秒前
clearboi发布了新的文献求助10
6秒前
优雅的怀莲完成签到,获得积分10
6秒前
yjn完成签到,获得积分10
7秒前
lkk完成签到,获得积分10
7秒前
12完成签到 ,获得积分10
7秒前
Able完成签到,获得积分20
7秒前
曹帅发布了新的文献求助10
7秒前
8秒前
辛勤荷花关注了科研通微信公众号
8秒前
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助150
10秒前
共渡完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510498
求助须知:如何正确求助?哪些是违规求助? 4605134
关于积分的说明 14492967
捐赠科研通 4540342
什么是DOI,文献DOI怎么找? 2487940
邀请新用户注册赠送积分活动 1470152
关于科研通互助平台的介绍 1442632