Large Language Models vs Human for Classifying Clinical Documents

计算机科学 自然语言处理 情报检索 人工智能 数据科学
作者
Akram Mustafa,Usman Naseem,Mostafa Rahimi Azghadi
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:195: 105800-105800
标识
DOI:10.1016/j.ijmedinf.2025.105800
摘要

Accurate classification of medical records is crucial for clinical documentation, particularly when using the 10th revision of the International Classification of Diseases (ICD-10) coding system. The use of machine learning algorithms and Systematized Nomenclature of Medicine (SNOMED) mapping has shown promise in performing these classifications. However, challenges remain, particularly in reducing false negatives, where certain diagnoses are not correctly identified by either approach. This study explores the potential of leveraging advanced large language models to improve the accuracy of ICD-10 classifications in challenging cases of medical records where machine learning and SNOMED mapping fail. We evaluated the performance of ChatGPT 3.5 and ChatGPT 4 in classifying ICD-10 codes from discharge summaries within selected records of the Medical Information Mart for Intensive Care (MIMIC) IV dataset. These records comprised 802 discharge summaries identified as false negatives by both machine learning and SNOMED mapping methods, showing their challenging case. Each summary was assessed by ChatGPT 3.5 and 4 using a classification prompt, and the results were compared to human coder evaluations. Five human coders, with a combined experience of over 30 years, independently classified a stratified sample of 100 summaries to validate ChatGPT's performance. ChatGPT 4 demonstrated significantly improved consistency over ChatGPT 3.5, with matching results between runs ranging from 86% to 89%, compared to 57% to 67% for ChatGPT 3.5. The classification accuracy of ChatGPT 4 was variable across different ICD-10 codes. Overall, human coders performed better than ChatGPT. However, ChatGPT matched the median performance of human coders, achieving an accuracy rate of 22%. This study underscores the potential of integrating advanced language models with clinical coding processes to improve documentation accuracy. ChatGPT 4 demonstrated improved consistency and comparable performance to median human coders, achieving 22% accuracy in challenging cases. Combining ChatGPT with methods like SNOMED mapping could further enhance clinical coding accuracy, particularly for complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yue完成签到,获得积分10
3秒前
淼队完成签到,获得积分10
4秒前
4秒前
落叶解三秋完成签到,获得积分10
5秒前
Crystal完成签到 ,获得积分10
8秒前
小小酥完成签到,获得积分10
8秒前
等待蚂蚁完成签到 ,获得积分10
9秒前
zgt01发布了新的文献求助10
9秒前
心心完成签到 ,获得积分10
10秒前
123完成签到,获得积分10
11秒前
温超完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
13秒前
Menta1y完成签到,获得积分10
13秒前
czzlancer完成签到,获得积分10
14秒前
汶溢完成签到,获得积分10
14秒前
xsss完成签到,获得积分10
15秒前
TAN完成签到,获得积分10
15秒前
通通通发布了新的文献求助10
16秒前
liudw完成签到,获得积分10
16秒前
丹丹子完成签到 ,获得积分10
17秒前
时光完成签到,获得积分10
17秒前
18秒前
充电宝应助vsvsgo采纳,获得10
20秒前
123完成签到 ,获得积分10
22秒前
Ammr完成签到 ,获得积分10
22秒前
无限的依波完成签到,获得积分10
22秒前
姽婳wy发布了新的文献求助10
23秒前
lemon完成签到,获得积分10
23秒前
传奇3应助duckspy采纳,获得30
24秒前
陈木木完成签到,获得积分10
25秒前
可可西里完成签到,获得积分10
26秒前
奋斗蜗牛完成签到,获得积分10
26秒前
CipherSage应助眼睛大的擎苍采纳,获得10
26秒前
打打应助小小酥采纳,获得10
27秒前
fox完成签到 ,获得积分10
27秒前
僦是卜够完成签到 ,获得积分10
28秒前
小马甲应助嘉梦采纳,获得10
31秒前
qiqi完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022