Large Language Models vs Human for Classifying Clinical Documents

计算机科学 自然语言处理 情报检索 人工智能 数据科学
作者
Akram Mustafa,Usman Naseem,Mostafa Rahimi Azghadi
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:195: 105800-105800
标识
DOI:10.1016/j.ijmedinf.2025.105800
摘要

Accurate classification of medical records is crucial for clinical documentation, particularly when using the 10th revision of the International Classification of Diseases (ICD-10) coding system. The use of machine learning algorithms and Systematized Nomenclature of Medicine (SNOMED) mapping has shown promise in performing these classifications. However, challenges remain, particularly in reducing false negatives, where certain diagnoses are not correctly identified by either approach. This study explores the potential of leveraging advanced large language models to improve the accuracy of ICD-10 classifications in challenging cases of medical records where machine learning and SNOMED mapping fail. We evaluated the performance of ChatGPT 3.5 and ChatGPT 4 in classifying ICD-10 codes from discharge summaries within selected records of the Medical Information Mart for Intensive Care (MIMIC) IV dataset. These records comprised 802 discharge summaries identified as false negatives by both machine learning and SNOMED mapping methods, showing their challenging case. Each summary was assessed by ChatGPT 3.5 and 4 using a classification prompt, and the results were compared to human coder evaluations. Five human coders, with a combined experience of over 30 years, independently classified a stratified sample of 100 summaries to validate ChatGPT's performance. ChatGPT 4 demonstrated significantly improved consistency over ChatGPT 3.5, with matching results between runs ranging from 86% to 89%, compared to 57% to 67% for ChatGPT 3.5. The classification accuracy of ChatGPT 4 was variable across different ICD-10 codes. Overall, human coders performed better than ChatGPT. However, ChatGPT matched the median performance of human coders, achieving an accuracy rate of 22%. This study underscores the potential of integrating advanced language models with clinical coding processes to improve documentation accuracy. ChatGPT 4 demonstrated improved consistency and comparable performance to median human coders, achieving 22% accuracy in challenging cases. Combining ChatGPT with methods like SNOMED mapping could further enhance clinical coding accuracy, particularly for complex scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助百事都可乐采纳,获得10
刚刚
1秒前
清璃发布了新的文献求助20
1秒前
2秒前
2秒前
大端发布了新的文献求助10
3秒前
???完成签到,获得积分10
4秒前
小火种儿发布了新的文献求助10
4秒前
无花果应助774140408采纳,获得10
4秒前
5秒前
warden完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
阳光襄发布了新的文献求助10
6秒前
WQ发布了新的文献求助10
6秒前
6秒前
自己发布了新的文献求助10
7秒前
7秒前
lijiaxin完成签到,获得积分10
7秒前
qwe发布了新的文献求助10
7秒前
兴奋芷发布了新的文献求助10
7秒前
高贵振家发布了新的文献求助10
8秒前
8秒前
8秒前
英俊的铭应助墨客采纳,获得30
8秒前
zhu完成签到,获得积分10
9秒前
10秒前
在水一方应助yay采纳,获得10
11秒前
Ava应助拼搏一江采纳,获得10
11秒前
搬砖人完成签到,获得积分10
11秒前
开朗的亦竹完成签到,获得积分10
12秒前
13秒前
Just森发布了新的文献求助10
13秒前
lijiaxin发布了新的文献求助10
14秒前
Orange应助自己采纳,获得10
14秒前
14秒前
犹豫大门发布了新的文献求助10
14秒前
小二郎应助等待纸飞机采纳,获得10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265