Large Language Models vs Human for Classifying Clinical Documents

计算机科学 自然语言处理 情报检索 人工智能 数据科学
作者
Akram Mustafa,Usman Naseem,Mostafa Rahimi Azghadi
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:195: 105800-105800
标识
DOI:10.1016/j.ijmedinf.2025.105800
摘要

Accurate classification of medical records is crucial for clinical documentation, particularly when using the 10th revision of the International Classification of Diseases (ICD-10) coding system. The use of machine learning algorithms and Systematized Nomenclature of Medicine (SNOMED) mapping has shown promise in performing these classifications. However, challenges remain, particularly in reducing false negatives, where certain diagnoses are not correctly identified by either approach. This study explores the potential of leveraging advanced large language models to improve the accuracy of ICD-10 classifications in challenging cases of medical records where machine learning and SNOMED mapping fail. We evaluated the performance of ChatGPT 3.5 and ChatGPT 4 in classifying ICD-10 codes from discharge summaries within selected records of the Medical Information Mart for Intensive Care (MIMIC) IV dataset. These records comprised 802 discharge summaries identified as false negatives by both machine learning and SNOMED mapping methods, showing their challenging case. Each summary was assessed by ChatGPT 3.5 and 4 using a classification prompt, and the results were compared to human coder evaluations. Five human coders, with a combined experience of over 30 years, independently classified a stratified sample of 100 summaries to validate ChatGPT's performance. ChatGPT 4 demonstrated significantly improved consistency over ChatGPT 3.5, with matching results between runs ranging from 86% to 89%, compared to 57% to 67% for ChatGPT 3.5. The classification accuracy of ChatGPT 4 was variable across different ICD-10 codes. Overall, human coders performed better than ChatGPT. However, ChatGPT matched the median performance of human coders, achieving an accuracy rate of 22%. This study underscores the potential of integrating advanced language models with clinical coding processes to improve documentation accuracy. ChatGPT 4 demonstrated improved consistency and comparable performance to median human coders, achieving 22% accuracy in challenging cases. Combining ChatGPT with methods like SNOMED mapping could further enhance clinical coding accuracy, particularly for complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助落后的哈密瓜采纳,获得10
刚刚
李健的小迷弟应助nn采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
孟德尔的豌豆完成签到,获得积分10
2秒前
哈哈哈发布了新的文献求助10
3秒前
单薄的夜南应助TIGun采纳,获得10
3秒前
杰尼龟发布了新的文献求助10
3秒前
生生完成签到,获得积分10
4秒前
ljj发布了新的文献求助10
4秒前
小新发布了新的文献求助10
4秒前
5秒前
lmx发布了新的文献求助10
5秒前
天天快乐应助一只猫猫头采纳,获得10
5秒前
Lee完成签到,获得积分10
5秒前
赘婿应助清新的篮球采纳,获得10
5秒前
yang发布了新的文献求助10
5秒前
7秒前
脑洞疼应助火火采纳,获得10
8秒前
上官若男应助疗效采纳,获得10
8秒前
kecheng应助云中采纳,获得10
8秒前
10秒前
Lee发布了新的文献求助10
10秒前
jackie able发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
隐形曼青应助李杍木采纳,获得10
12秒前
13秒前
13秒前
14秒前
14秒前
高文雅发布了新的文献求助10
14秒前
moonbeam完成签到,获得积分10
15秒前
唐唐发布了新的文献求助10
15秒前
15秒前
贿猫完成签到,获得积分20
15秒前
16秒前
嘻嘻嘻完成签到,获得积分10
17秒前
景三完成签到 ,获得积分10
17秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970240
求助须知:如何正确求助?哪些是违规求助? 3514997
关于积分的说明 11176725
捐赠科研通 3250268
什么是DOI,文献DOI怎么找? 1795244
邀请新用户注册赠送积分活动 875725
科研通“疑难数据库(出版商)”最低求助积分说明 805004