Large Language Models vs Human for Classifying Clinical Documents

计算机科学 自然语言处理 情报检索 人工智能 数据科学
作者
Akram Mustafa,Usman Naseem,Mostafa Rahimi Azghadi
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:195: 105800-105800
标识
DOI:10.1016/j.ijmedinf.2025.105800
摘要

Accurate classification of medical records is crucial for clinical documentation, particularly when using the 10th revision of the International Classification of Diseases (ICD-10) coding system. The use of machine learning algorithms and Systematized Nomenclature of Medicine (SNOMED) mapping has shown promise in performing these classifications. However, challenges remain, particularly in reducing false negatives, where certain diagnoses are not correctly identified by either approach. This study explores the potential of leveraging advanced large language models to improve the accuracy of ICD-10 classifications in challenging cases of medical records where machine learning and SNOMED mapping fail. We evaluated the performance of ChatGPT 3.5 and ChatGPT 4 in classifying ICD-10 codes from discharge summaries within selected records of the Medical Information Mart for Intensive Care (MIMIC) IV dataset. These records comprised 802 discharge summaries identified as false negatives by both machine learning and SNOMED mapping methods, showing their challenging case. Each summary was assessed by ChatGPT 3.5 and 4 using a classification prompt, and the results were compared to human coder evaluations. Five human coders, with a combined experience of over 30 years, independently classified a stratified sample of 100 summaries to validate ChatGPT's performance. ChatGPT 4 demonstrated significantly improved consistency over ChatGPT 3.5, with matching results between runs ranging from 86% to 89%, compared to 57% to 67% for ChatGPT 3.5. The classification accuracy of ChatGPT 4 was variable across different ICD-10 codes. Overall, human coders performed better than ChatGPT. However, ChatGPT matched the median performance of human coders, achieving an accuracy rate of 22%. This study underscores the potential of integrating advanced language models with clinical coding processes to improve documentation accuracy. ChatGPT 4 demonstrated improved consistency and comparable performance to median human coders, achieving 22% accuracy in challenging cases. Combining ChatGPT with methods like SNOMED mapping could further enhance clinical coding accuracy, particularly for complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoe完成签到 ,获得积分10
1秒前
3秒前
fangxin完成签到,获得积分10
4秒前
高贵逍遥完成签到 ,获得积分10
5秒前
小HO完成签到,获得积分10
5秒前
Ray发布了新的文献求助10
7秒前
小灰灰发布了新的文献求助10
7秒前
坦率尔琴完成签到,获得积分10
9秒前
Min完成签到,获得积分10
10秒前
代纤绮完成签到,获得积分10
11秒前
gnil完成签到,获得积分10
11秒前
liuzhongyi完成签到,获得积分10
12秒前
kellen完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助20
14秒前
Silence完成签到 ,获得积分10
15秒前
ian完成签到,获得积分10
15秒前
狂野的友灵完成签到 ,获得积分10
17秒前
18秒前
thchiang发布了新的文献求助10
18秒前
要开心完成签到,获得积分10
19秒前
文静的白羊完成签到,获得积分10
19秒前
22秒前
我我我完成签到,获得积分10
24秒前
小西完成签到 ,获得积分10
25秒前
海洋球完成签到 ,获得积分10
25秒前
Liao完成签到,获得积分10
25秒前
oVUVo完成签到,获得积分10
25秒前
Adler完成签到,获得积分10
27秒前
会飞的生菜完成签到,获得积分10
28秒前
29秒前
liu发布了新的文献求助10
29秒前
善学以致用应助土豆采纳,获得10
30秒前
认真映真完成签到,获得积分10
30秒前
33秒前
Damon完成签到 ,获得积分10
34秒前
arisfield完成签到,获得积分10
34秒前
hhhhwl发布了新的文献求助10
35秒前
35秒前
37秒前
一丁点可爱完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044838
求助须知:如何正确求助?哪些是违规求助? 4274315
关于积分的说明 13323674
捐赠科研通 4088088
什么是DOI,文献DOI怎么找? 2236731
邀请新用户注册赠送积分活动 1244114
关于科研通互助平台的介绍 1172128