Large Language Models vs Human for Classifying Clinical Documents

计算机科学 自然语言处理 情报检索 人工智能 数据科学
作者
Akram Mustafa,Usman Naseem,Mostafa Rahimi Azghadi
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:195: 105800-105800
标识
DOI:10.1016/j.ijmedinf.2025.105800
摘要

Accurate classification of medical records is crucial for clinical documentation, particularly when using the 10th revision of the International Classification of Diseases (ICD-10) coding system. The use of machine learning algorithms and Systematized Nomenclature of Medicine (SNOMED) mapping has shown promise in performing these classifications. However, challenges remain, particularly in reducing false negatives, where certain diagnoses are not correctly identified by either approach. This study explores the potential of leveraging advanced large language models to improve the accuracy of ICD-10 classifications in challenging cases of medical records where machine learning and SNOMED mapping fail. We evaluated the performance of ChatGPT 3.5 and ChatGPT 4 in classifying ICD-10 codes from discharge summaries within selected records of the Medical Information Mart for Intensive Care (MIMIC) IV dataset. These records comprised 802 discharge summaries identified as false negatives by both machine learning and SNOMED mapping methods, showing their challenging case. Each summary was assessed by ChatGPT 3.5 and 4 using a classification prompt, and the results were compared to human coder evaluations. Five human coders, with a combined experience of over 30 years, independently classified a stratified sample of 100 summaries to validate ChatGPT's performance. ChatGPT 4 demonstrated significantly improved consistency over ChatGPT 3.5, with matching results between runs ranging from 86% to 89%, compared to 57% to 67% for ChatGPT 3.5. The classification accuracy of ChatGPT 4 was variable across different ICD-10 codes. Overall, human coders performed better than ChatGPT. However, ChatGPT matched the median performance of human coders, achieving an accuracy rate of 22%. This study underscores the potential of integrating advanced language models with clinical coding processes to improve documentation accuracy. ChatGPT 4 demonstrated improved consistency and comparable performance to median human coders, achieving 22% accuracy in challenging cases. Combining ChatGPT with methods like SNOMED mapping could further enhance clinical coding accuracy, particularly for complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xue2021完成签到,获得积分10
刚刚
他忽然的人完成签到 ,获得积分10
刚刚
英姑应助student采纳,获得10
刚刚
1秒前
MOMO完成签到,获得积分10
1秒前
黄心怡完成签到,获得积分10
1秒前
xxfsx应助小埋采纳,获得10
2秒前
jasmine完成签到,获得积分10
2秒前
ezekiet完成签到 ,获得积分10
2秒前
哈哈呵完成签到,获得积分10
3秒前
3秒前
lin完成签到,获得积分10
3秒前
ma完成签到,获得积分10
3秒前
鹿鹿完成签到,获得积分10
3秒前
嘉平三十发布了新的文献求助10
3秒前
霸气果汁完成签到,获得积分10
3秒前
April完成签到,获得积分10
4秒前
4秒前
4秒前
傻傻的夜柳完成签到 ,获得积分10
4秒前
CodeCraft应助逸风望采纳,获得10
4秒前
爆炒菜头完成签到,获得积分10
5秒前
5秒前
好运连连完成签到 ,获得积分10
5秒前
壮观的谷冬完成签到,获得积分10
5秒前
邪恶土拨鼠应助乐观的海采纳,获得10
5秒前
虔三愿驳回了Ava应助
5秒前
十六月夜完成签到,获得积分10
5秒前
song_song完成签到,获得积分10
5秒前
Quhang发布了新的文献求助10
5秒前
dengyingni发布了新的文献求助10
6秒前
tans0008完成签到,获得积分10
6秒前
小羊完成签到 ,获得积分10
6秒前
月月完成签到,获得积分10
7秒前
蓝桉完成签到,获得积分10
7秒前
小米完成签到,获得积分10
7秒前
果酱君完成签到,获得积分10
7秒前
喔喔哦完成签到,获得积分10
7秒前
仙道影完成签到,获得积分10
7秒前
杨静发布了新的文献求助10
7秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387753
求助须知:如何正确求助?哪些是违规求助? 4509705
关于积分的说明 14032376
捐赠科研通 4420535
什么是DOI,文献DOI怎么找? 2428303
邀请新用户注册赠送积分活动 1420936
关于科研通互助平台的介绍 1400119