On-demand reverse design of polymers with PolyTAO

计算机科学
作者
Haoke Qiu,Zhao‐Yan Sun
出处
期刊:npj computational materials [Springer Nature]
卷期号:10 (1) 被引量:1
标识
DOI:10.1038/s41524-024-01466-5
摘要

The forward screening and reverse design of drug molecules, inorganic molecules, and polymers with enhanced properties are vital for accelerating the transition from laboratory research to market application. Specifically, due to the scarcity of large-scale datasets, the discovery of polymers via materials informatics is particularly challenging. Nonetheless, scientists have developed various machine learning models for polymer structure-property relationships using only small polymer datasets, thereby advancing the forward screening process of polymers. However, the success of this approach ultimately depends on the diversity of the candidate pool, and exhaustively enumerating all possible polymer structures through human imagination is impractical. Consequently, achieving on-demand reverse design of polymers is essential. In this work, we curate an immense polymer dataset containing nearly one million polymeric structure-property pairs based on expert knowledge. Leveraging this dataset, we propose a Transformer-Assisted Oriented pretrained model for on-demand polymer generation (PolyTAO). This model generates polymers with 99.27% chemical validity in top-1 generation mode (approximately 200k generated polymers), representing the highest reported success rate among polymer generative models, and this was achieved on the largest test set. Importantly, the average R2 between the properties of the generated polymers and their expected values across 15 predefined properties is 0.96, which underscores PolyTAO's powerful on-demand polymer generation capabilities. To further evaluate the pretrained model's performance in generating polymers with additional user-defined properties for downstream tasks, we conduct fine-tuning experiments on three publicly available small polymer datasets using both semi-template and template-free generation paradigms. Through these extensive experiments, we demonstrate that our pretrained model and its fine-tuned versions are capable of achieving the on-demand reverse design of polymers with specified properties, whether in a semi-template generation or the more challenging template-free generation scenarios, showcasing its potential as a unified pretrained foundation model for polymer generation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobin发布了新的文献求助10
1秒前
完美世界应助清秀豪英采纳,获得10
2秒前
4秒前
5秒前
6秒前
hmy完成签到,获得积分10
6秒前
Augenstern发布了新的文献求助10
7秒前
Silver完成签到,获得积分10
7秒前
7秒前
8秒前
一片叶子完成签到,获得积分10
9秒前
与狼共舞发布了新的文献求助10
10秒前
10秒前
犹豫觅翠发布了新的文献求助20
10秒前
慕青应助hmy采纳,获得10
10秒前
11秒前
沈言应助12121采纳,获得10
11秒前
11秒前
CipherSage应助超帅pzc采纳,获得10
11秒前
11秒前
深情安青应助超帅pzc采纳,获得10
11秒前
orixero应助超帅pzc采纳,获得10
11秒前
zhang发布了新的文献求助30
11秒前
李健应助超帅pzc采纳,获得10
11秒前
脑洞疼应助超帅pzc采纳,获得10
11秒前
bingxinl发布了新的文献求助10
11秒前
han完成签到,获得积分10
13秒前
14秒前
快乐烧鹅完成签到,获得积分10
14秒前
玻璃瓶发布了新的文献求助10
14秒前
17秒前
17秒前
han发布了新的文献求助10
18秒前
舒心莫言完成签到,获得积分10
19秒前
jnight关注了科研通微信公众号
20秒前
27秒前
55555发布了新的文献求助20
28秒前
坚强亦丝应助大气的谷梦采纳,获得10
29秒前
30秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309982
求助须知:如何正确求助?哪些是违规求助? 2943089
关于积分的说明 8512665
捐赠科研通 2618199
什么是DOI,文献DOI怎么找? 1430922
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490