On-demand reverse design of polymers with PolyTAO

计算机科学
作者
Haoke Qiu,Zhao‐Yan Sun
出处
期刊:npj computational materials [Nature Portfolio]
卷期号:10 (1) 被引量:1
标识
DOI:10.1038/s41524-024-01466-5
摘要

The forward screening and reverse design of drug molecules, inorganic molecules, and polymers with enhanced properties are vital for accelerating the transition from laboratory research to market application. Specifically, due to the scarcity of large-scale datasets, the discovery of polymers via materials informatics is particularly challenging. Nonetheless, scientists have developed various machine learning models for polymer structure-property relationships using only small polymer datasets, thereby advancing the forward screening process of polymers. However, the success of this approach ultimately depends on the diversity of the candidate pool, and exhaustively enumerating all possible polymer structures through human imagination is impractical. Consequently, achieving on-demand reverse design of polymers is essential. In this work, we curate an immense polymer dataset containing nearly one million polymeric structure-property pairs based on expert knowledge. Leveraging this dataset, we propose a Transformer-Assisted Oriented pretrained model for on-demand polymer generation (PolyTAO). This model generates polymers with 99.27% chemical validity in top-1 generation mode (approximately 200k generated polymers), representing the highest reported success rate among polymer generative models, and this was achieved on the largest test set. Importantly, the average R2 between the properties of the generated polymers and their expected values across 15 predefined properties is 0.96, which underscores PolyTAO's powerful on-demand polymer generation capabilities. To further evaluate the pretrained model's performance in generating polymers with additional user-defined properties for downstream tasks, we conduct fine-tuning experiments on three publicly available small polymer datasets using both semi-template and template-free generation paradigms. Through these extensive experiments, we demonstrate that our pretrained model and its fine-tuned versions are capable of achieving the on-demand reverse design of polymers with specified properties, whether in a semi-template generation or the more challenging template-free generation scenarios, showcasing its potential as a unified pretrained foundation model for polymer generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
carly完成签到 ,获得积分10
2秒前
3秒前
vicky完成签到,获得积分10
4秒前
三石完成签到,获得积分10
6秒前
大模型应助安好采纳,获得10
7秒前
8秒前
星辰完成签到 ,获得积分10
8秒前
王青青发布了新的文献求助10
9秒前
一顿吃不饱完成签到,获得积分0
9秒前
可靠的书本完成签到,获得积分10
10秒前
鲨鱼也蛀牙完成签到,获得积分10
11秒前
ricown完成签到,获得积分10
11秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
12秒前
chiazy完成签到,获得积分10
13秒前
13秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
xzy998应助科研通管家采纳,获得10
15秒前
Akjan应助科研通管家采纳,获得10
15秒前
小王同学完成签到,获得积分10
15秒前
小花完成签到 ,获得积分10
16秒前
文心同学完成签到,获得积分0
17秒前
18秒前
缥缈若翠完成签到,获得积分10
19秒前
安好发布了新的文献求助10
20秒前
淡淡阁完成签到 ,获得积分10
21秒前
萌萌雨完成签到,获得积分10
22秒前
23秒前
陈老太完成签到 ,获得积分10
25秒前
小斌完成签到,获得积分10
26秒前
O_O完成签到,获得积分10
28秒前
Liang完成签到,获得积分10
31秒前
lii完成签到,获得积分10
32秒前
一杯沧海完成签到 ,获得积分10
32秒前
桢桢树完成签到,获得积分10
33秒前
cheng完成签到,获得积分10
35秒前
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015