清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

On-demand reverse design of polymers with PolyTAO

计算机科学
作者
Haoke Qiu,Zhao‐Yan Sun
出处
期刊:npj computational materials [Springer Nature]
卷期号:10 (1) 被引量:1
标识
DOI:10.1038/s41524-024-01466-5
摘要

The forward screening and reverse design of drug molecules, inorganic molecules, and polymers with enhanced properties are vital for accelerating the transition from laboratory research to market application. Specifically, due to the scarcity of large-scale datasets, the discovery of polymers via materials informatics is particularly challenging. Nonetheless, scientists have developed various machine learning models for polymer structure-property relationships using only small polymer datasets, thereby advancing the forward screening process of polymers. However, the success of this approach ultimately depends on the diversity of the candidate pool, and exhaustively enumerating all possible polymer structures through human imagination is impractical. Consequently, achieving on-demand reverse design of polymers is essential. In this work, we curate an immense polymer dataset containing nearly one million polymeric structure-property pairs based on expert knowledge. Leveraging this dataset, we propose a Transformer-Assisted Oriented pretrained model for on-demand polymer generation (PolyTAO). This model generates polymers with 99.27% chemical validity in top-1 generation mode (approximately 200k generated polymers), representing the highest reported success rate among polymer generative models, and this was achieved on the largest test set. Importantly, the average R2 between the properties of the generated polymers and their expected values across 15 predefined properties is 0.96, which underscores PolyTAO's powerful on-demand polymer generation capabilities. To further evaluate the pretrained model's performance in generating polymers with additional user-defined properties for downstream tasks, we conduct fine-tuning experiments on three publicly available small polymer datasets using both semi-template and template-free generation paradigms. Through these extensive experiments, we demonstrate that our pretrained model and its fine-tuned versions are capable of achieving the on-demand reverse design of polymers with specified properties, whether in a semi-template generation or the more challenging template-free generation scenarios, showcasing its potential as a unified pretrained foundation model for polymer generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助蟪蛄鸪采纳,获得10
9秒前
CodeCraft应助蟪蛄鸪采纳,获得10
9秒前
浮游应助蟪蛄鸪采纳,获得10
9秒前
浮游应助蟪蛄鸪采纳,获得10
9秒前
脑洞疼应助蟪蛄鸪采纳,获得10
9秒前
uppercrusteve完成签到,获得积分10
15秒前
我是老大应助蟪蛄鸪采纳,获得10
16秒前
完美世界应助蟪蛄鸪采纳,获得10
17秒前
田様应助蟪蛄鸪采纳,获得10
17秒前
浮游应助蟪蛄鸪采纳,获得10
17秒前
星辰大海应助蟪蛄鸪采纳,获得10
17秒前
斯文败类应助蟪蛄鸪采纳,获得10
17秒前
英俊的铭应助蟪蛄鸪采纳,获得10
17秒前
英俊的铭应助蟪蛄鸪采纳,获得10
17秒前
共享精神应助蟪蛄鸪采纳,获得10
17秒前
浮游应助蟪蛄鸪采纳,获得10
17秒前
CodeCraft应助delia采纳,获得10
19秒前
ybwei2008_163完成签到,获得积分10
21秒前
31秒前
WSQ发布了新的文献求助10
34秒前
如意2023完成签到 ,获得积分10
43秒前
WSQ完成签到,获得积分10
1分钟前
1分钟前
优雅的平安完成签到 ,获得积分10
1分钟前
jh完成签到 ,获得积分10
1分钟前
zly完成签到 ,获得积分10
1分钟前
delia给delia的求助进行了留言
1分钟前
MM完成签到 ,获得积分0
1分钟前
bo完成签到 ,获得积分10
1分钟前
牛仔完成签到 ,获得积分10
1分钟前
yyx完成签到 ,获得积分10
2分钟前
fjmelite完成签到 ,获得积分10
2分钟前
金钰贝儿完成签到,获得积分10
2分钟前
萱棚完成签到 ,获得积分10
2分钟前
笨笨完成签到 ,获得积分10
2分钟前
2分钟前
Qian完成签到 ,获得积分10
2分钟前
温暖的蚂蚁完成签到 ,获得积分10
2分钟前
萌兴完成签到 ,获得积分10
2分钟前
LIVE完成签到,获得积分10
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347161
求助须知:如何正确求助?哪些是违规求助? 4481514
关于积分的说明 13947817
捐赠科研通 4379591
什么是DOI,文献DOI怎么找? 2406501
邀请新用户注册赠送积分活动 1399105
关于科研通互助平台的介绍 1372054