亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence End-to-End Workflow for Transmission Electron Microscopy: From Data Analysis Automation to Materials Knowledge Unveiling

工作流程 自动化 端到端原则 计算机科学 透射电子显微镜 数据科学 纳米技术 工程类 人工智能 材料科学 数据库 机械工程
作者
Marc Botifoll,Ivan Pinto-Huguet,Enzo Rotunno,Thomas Galvani,Catalina Coll,Payam Habibzadeh Kavkani,Maria Chiara Spadaro,Yann-Michel Niquet,Martin Eriksen,Sara Martí‐Sánchez,Georgios Katsaros,Giordano Scappucci,Peter Krogstrup,Giovanni Isella,Andreu Cabot,G. Merino,Pablo Ordejón,Stephan Roche,Vincenzo Grillo,Jordi Arbiol
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.01024
摘要

This article introduces a groundbreaking analytical workflow designed for the holistic characterisation, modelling and physical simulation of device heterostructures. Our innovative workflow autonomously, comprehensively and locally characterises the crystallographic information and 3D orientation of the crystal phases, the elemental composition, and the strain maps of devices from (scanning) transmission electron microscopy data. It converts a manual characterisation process that traditionally takes days into an automatic routine completed in minutes. This is achieved through a physics-guided artificial intelligence model that combines unsupervised and supervised machine learning in a modular way to provide a representative 3D description of the devices, materials structures, or samples under analysis. To culminate the process, we integrate the extracted knowledge to automate the generation of both 3D finite element and atomic models of millions of atoms acting as digital twins, enabling simulations that yield essential physical and chemical insights crucial for understanding the device's behaviour in practical applications. We prove this end-to-end workflow with a state-of-the-art materials platform based on SiGe planar heterostructures for hosting coherent and scalable spin qubits. Our workflow connects representative digital twins of the experimental devices with their theoretical properties to reveal the true impact that every atom in the structure has on their electronic properties, and eventually, into their functional quantum performance. Notably, the versatility of our workflow is demonstrated through its successful application to a wide array of materials systems, device configurations and sample morphologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Jasper应助Koala04采纳,获得10
17秒前
ding应助sunshineboy采纳,获得10
37秒前
传奇3应助literature采纳,获得10
42秒前
充电宝应助科研通管家采纳,获得10
45秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得20
45秒前
1分钟前
taffysl完成签到,获得积分10
1分钟前
sunshineboy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6.1应助mrhughas采纳,获得10
2分钟前
2分钟前
ajing发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
VDC应助科研通管家采纳,获得10
2分钟前
VDC应助科研通管家采纳,获得10
2分钟前
VDC应助科研通管家采纳,获得10
2分钟前
VDC应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
fdu_sf发布了新的文献求助10
2分钟前
2分钟前
3分钟前
mrhughas发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Koala04发布了新的文献求助10
3分钟前
共享精神应助抹茶采纳,获得10
3分钟前
mrhughas完成签到,获得积分10
3分钟前
田様应助张尧摇摇摇采纳,获得10
4分钟前
4分钟前
4分钟前
Koala04完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457