Artificial Intelligence End-to-End Workflow for Transmission Electron Microscopy: From Data Analysis Automation to Materials Knowledge Unveiling

工作流程 自动化 端到端原则 计算机科学 透射电子显微镜 数据科学 纳米技术 工程类 人工智能 材料科学 数据库 机械工程
作者
Marc Botifoll,Ivan Pinto-Huguet,Enzo Rotunno,Thomas Galvani,Catalina Coll,Payam Habibzadeh Kavkani,Maria Chiara Spadaro,Yann-Michel Niquet,Martin Eriksen,Sara Martí‐Sánchez,Georgios Katsaros,Giordano Scappucci,Peter Krogstrup,Giovanni Isella,Andreu Cabot,G. Merino,Pablo Ordejón,Stephan Roche,Vincenzo Grillo,Jordi Arbiol
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.01024
摘要

This article introduces a groundbreaking analytical workflow designed for the holistic characterisation, modelling and physical simulation of device heterostructures. Our innovative workflow autonomously, comprehensively and locally characterises the crystallographic information and 3D orientation of the crystal phases, the elemental composition, and the strain maps of devices from (scanning) transmission electron microscopy data. It converts a manual characterisation process that traditionally takes days into an automatic routine completed in minutes. This is achieved through a physics-guided artificial intelligence model that combines unsupervised and supervised machine learning in a modular way to provide a representative 3D description of the devices, materials structures, or samples under analysis. To culminate the process, we integrate the extracted knowledge to automate the generation of both 3D finite element and atomic models of millions of atoms acting as digital twins, enabling simulations that yield essential physical and chemical insights crucial for understanding the device's behaviour in practical applications. We prove this end-to-end workflow with a state-of-the-art materials platform based on SiGe planar heterostructures for hosting coherent and scalable spin qubits. Our workflow connects representative digital twins of the experimental devices with their theoretical properties to reveal the true impact that every atom in the structure has on their electronic properties, and eventually, into their functional quantum performance. Notably, the versatility of our workflow is demonstrated through its successful application to a wide array of materials systems, device configurations and sample morphologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助蜗牛撵大象采纳,获得10
刚刚
科研通AI5应助韓大侠采纳,获得10
1秒前
fan发布了新的文献求助10
1秒前
2秒前
yar应助明天会更美好采纳,获得10
3秒前
圆你心安发布了新的文献求助10
4秒前
5秒前
怎么说完成签到,获得积分10
5秒前
6秒前
嗯嗯嗯完成签到,获得积分10
6秒前
7秒前
言无间发布了新的文献求助10
7秒前
科研通AI2S应助zhang采纳,获得10
9秒前
9秒前
shinn发布了新的文献求助10
9秒前
10秒前
王珏完成签到,获得积分10
11秒前
茄酱完成签到,获得积分10
11秒前
科研狗发布了新的文献求助10
15秒前
15秒前
fan完成签到,获得积分10
16秒前
思源应助shinn采纳,获得10
17秒前
韓大侠发布了新的文献求助10
17秒前
CodeCraft应助王含爽采纳,获得10
19秒前
酷酷的冰真应助漂亮豆芽采纳,获得30
19秒前
王珏发布了新的文献求助10
19秒前
22秒前
22秒前
vlots应助独特靖巧采纳,获得30
22秒前
Elaine完成签到,获得积分10
23秒前
dique3hao完成签到 ,获得积分10
23秒前
ygx发布了新的文献求助10
24秒前
余111完成签到,获得积分10
24秒前
所所应助小白采纳,获得10
26秒前
丘比特应助嚯嚯嚯嚯采纳,获得10
26秒前
wdewdfe完成签到 ,获得积分10
26秒前
shayla发布了新的文献求助30
26秒前
27秒前
老十七发布了新的文献求助10
28秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164710
捐赠科研通 3247680
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498