Artificial Intelligence End-to-End Workflow for Transmission Electron Microscopy: From Data Analysis Automation to Materials Knowledge Unveiling

工作流程 自动化 端到端原则 计算机科学 透射电子显微镜 数据科学 纳米技术 工程类 人工智能 材料科学 数据库 机械工程
作者
Marc Botifoll,Ivan Pinto-Huguet,Enzo Rotunno,Thomas Galvani,Catalina Coll,Payam Habibzadeh Kavkani,Maria Chiara Spadaro,Yann-Michel Niquet,Martin Eriksen,Sara Martí‐Sánchez,Georgios Katsaros,Giordano Scappucci,Peter Krogstrup,Giovanni Isella,Andreu Cabot,G. Merino,Pablo Ordejón,Stephan Roche,Vincenzo Grillo,Jordi Arbiol
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.01024
摘要

This article introduces a groundbreaking analytical workflow designed for the holistic characterisation, modelling and physical simulation of device heterostructures. Our innovative workflow autonomously, comprehensively and locally characterises the crystallographic information and 3D orientation of the crystal phases, the elemental composition, and the strain maps of devices from (scanning) transmission electron microscopy data. It converts a manual characterisation process that traditionally takes days into an automatic routine completed in minutes. This is achieved through a physics-guided artificial intelligence model that combines unsupervised and supervised machine learning in a modular way to provide a representative 3D description of the devices, materials structures, or samples under analysis. To culminate the process, we integrate the extracted knowledge to automate the generation of both 3D finite element and atomic models of millions of atoms acting as digital twins, enabling simulations that yield essential physical and chemical insights crucial for understanding the device's behaviour in practical applications. We prove this end-to-end workflow with a state-of-the-art materials platform based on SiGe planar heterostructures for hosting coherent and scalable spin qubits. Our workflow connects representative digital twins of the experimental devices with their theoretical properties to reveal the true impact that every atom in the structure has on their electronic properties, and eventually, into their functional quantum performance. Notably, the versatility of our workflow is demonstrated through its successful application to a wide array of materials systems, device configurations and sample morphologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
baisefengche发布了新的文献求助10
刚刚
Hiker发布了新的文献求助10
1秒前
梁钋瑞发布了新的文献求助10
1秒前
1秒前
YINGYAN应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
小蘑菇应助酷酷乐瑶采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Owen应助嘟噜采纳,获得10
2秒前
ccm应助科研通管家采纳,获得10
2秒前
李爱国应助yu采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
esfrg完成签到,获得积分10
2秒前
小二郎应助EIS采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
ccm应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
ctttt发布了新的文献求助10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
干净寻冬应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
fanhlin发布了新的文献求助30
3秒前
wy.he应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
干净寻冬应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
wy.he应助科研通管家采纳,获得10
3秒前
可爱的函函应助王梓磬采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398