Artificial Intelligence End-to-End Workflow for Transmission Electron Microscopy: From Data Analysis Automation to Materials Knowledge Unveiling

工作流程 自动化 端到端原则 计算机科学 透射电子显微镜 数据科学 纳米技术 工程类 人工智能 材料科学 数据库 机械工程
作者
Marc Botifoll,Ivan Pinto-Huguet,Enzo Rotunno,Thomas Galvani,Catalina Coll,Payam Habibzadeh Kavkani,Maria Chiara Spadaro,Yann-Michel Niquet,Martin Eriksen,Sara Martí‐Sánchez,Georgios Katsaros,Giordano Scappucci,Peter Krogstrup,Giovanni Isella,Andreu Cabot,G. Merino,Pablo Ordejón,Stephan Roche,Vincenzo Grillo,Jordi Arbiol
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.01024
摘要

This article introduces a groundbreaking analytical workflow designed for the holistic characterisation, modelling and physical simulation of device heterostructures. Our innovative workflow autonomously, comprehensively and locally characterises the crystallographic information and 3D orientation of the crystal phases, the elemental composition, and the strain maps of devices from (scanning) transmission electron microscopy data. It converts a manual characterisation process that traditionally takes days into an automatic routine completed in minutes. This is achieved through a physics-guided artificial intelligence model that combines unsupervised and supervised machine learning in a modular way to provide a representative 3D description of the devices, materials structures, or samples under analysis. To culminate the process, we integrate the extracted knowledge to automate the generation of both 3D finite element and atomic models of millions of atoms acting as digital twins, enabling simulations that yield essential physical and chemical insights crucial for understanding the device's behaviour in practical applications. We prove this end-to-end workflow with a state-of-the-art materials platform based on SiGe planar heterostructures for hosting coherent and scalable spin qubits. Our workflow connects representative digital twins of the experimental devices with their theoretical properties to reveal the true impact that every atom in the structure has on their electronic properties, and eventually, into their functional quantum performance. Notably, the versatility of our workflow is demonstrated through its successful application to a wide array of materials systems, device configurations and sample morphologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
材料打工人完成签到 ,获得积分10
1秒前
懦弱的难敌完成签到,获得积分10
2秒前
2秒前
顾矜应助过奖啦采纳,获得10
2秒前
清水巍少发布了新的文献求助10
2秒前
Cissy发布了新的文献求助10
2秒前
luckysame发布了新的文献求助10
3秒前
惜云发布了新的文献求助10
3秒前
冲鸭完成签到,获得积分10
3秒前
赘婿应助yfy采纳,获得10
4秒前
yuyu发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
所所应助怕热除铁采纳,获得10
7秒前
孤独的涔完成签到,获得积分10
7秒前
jazz完成签到,获得积分10
7秒前
白昼の月完成签到 ,获得积分0
8秒前
鱼鱼鱼发布了新的文献求助10
8秒前
坦率的香烟完成签到,获得积分10
8秒前
8秒前
大方小苏完成签到,获得积分10
9秒前
9秒前
10秒前
自觉紫山发布了新的文献求助10
10秒前
10秒前
11秒前
酷波er应助biubiu采纳,获得10
12秒前
12秒前
三十三完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
NIER完成签到,获得积分20
13秒前
胡家裕完成签到 ,获得积分10
14秒前
顾矜应助和谐的洋葱采纳,获得10
14秒前
盛欢发布了新的文献求助20
14秒前
luckysame发布了新的文献求助10
15秒前
完美世界应助Netsky采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068023
求助须知:如何正确求助?哪些是违规求助? 4289750
关于积分的说明 13365025
捐赠科研通 4109504
什么是DOI,文献DOI怎么找? 2250387
邀请新用户注册赠送积分活动 1255727
关于科研通互助平台的介绍 1188244