AI-powered ultrasonic thermometry for HIFU therapy in deep organ

超声波传感器 生物医学工程 医学 放射科
作者
Shunyao Luan,Yongshuo Ji,Yumei Liu,Linling Zhu,Hong Zhao,Haoyu Zhou,Ké Li,Weizhen Zhu,Benpeng Zhu
出处
期刊:Ultrasonics Sonochemistry [Elsevier]
卷期号:111: 107154-107154
标识
DOI:10.1016/j.ultsonch.2024.107154
摘要

High-intensity focused ultrasound (HIFU) is considered as an important non-invasive way for tumor ablation in deep organs. However, accurate real-time monitoring of the temperature field within HIFU focal area remains a challenge. Although ultrasound technology, compared with other approaches, is a good choice for noninvasive and real-time monitoring on the temperature distribution, traditional ultrasonic thermometry mainly relies on the backscattered signal, which is difficult for high temperature (>50 °C) measurement. Given that artificial intelligence (AI) shows significant potential for biomedical applications, we propose an AI-powered ultrasonic thermometry using an end-to-end deep neural network termed Breath-guided Multimodal Teacher-Student (BMTS), which possesses the capability to elucidate the interaction between HIFU and complex heterogeneous biological media. It has been demonstrated experimentally that two-dimension temperature distribution within HIFU focal area in deep organ can be accurately reconstructed with an average error and a frame speed of 0.8 °C and 0.37 s, respectively. Most importantly, the maximum measurable temperature for ultrasonic technology has been successfully expanded to a record value of 67 °C. This breakthrough indicates that the development of AI-powered ultrasonic thermometry is beneficial for precise HIFU therapy planning in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
1秒前
2秒前
今后应助333采纳,获得10
3秒前
pu发布了新的文献求助10
4秒前
Akim应助梓榆采纳,获得10
5秒前
劼大大完成签到,获得积分10
5秒前
最优解完成签到 ,获得积分20
6秒前
6秒前
通~发布了新的文献求助10
6秒前
一段乐多完成签到,获得积分10
7秒前
7秒前
7秒前
给我找完成签到,获得积分10
8秒前
桐桐应助Yuki0616采纳,获得10
8秒前
小马甲应助鸣隐采纳,获得10
8秒前
ycd完成签到,获得积分10
9秒前
ark861023完成签到,获得积分10
9秒前
淡定问芙完成签到,获得积分10
9秒前
斯文败类应助惠惠采纳,获得10
10秒前
10秒前
Meowly完成签到,获得积分10
10秒前
11秒前
11秒前
陶醉觅夏发布了新的文献求助10
11秒前
pu完成签到,获得积分10
11秒前
小灵通完成签到,获得积分10
11秒前
给我找发布了新的文献求助10
11秒前
科研通AI2S应助LIn采纳,获得10
12秒前
gaga完成签到,获得积分10
12秒前
_Charmo完成签到,获得积分10
12秒前
Slemon完成签到,获得积分10
12秒前
谦谦姜完成签到,获得积分10
14秒前
15秒前
JINGZHANG发布了新的文献求助10
15秒前
15秒前
归海天与应助糊弄学专家采纳,获得10
15秒前
风中的青完成签到,获得积分10
16秒前
16秒前
16秒前
duxinyue关注了科研通微信公众号
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794