清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Domain knowledge-guided machine learning framework for state of health estimation in Lithium-ion batteries

锂(药物) 领域(数学分析) 估计 计算机科学 健康状况 国家(计算机科学) 离子 人工智能 机器学习 工程类 电池(电) 化学 心理学 系统工程 物理 数学 功率(物理) 算法 精神科 数学分析 量子力学 有机化学
作者
Andrea Lanubile,Pietro Bosoni,Gabriele Pozzato,Anirudh Allam,Matteo Acquarone,Simona Onori
标识
DOI:10.1038/s44172-024-00304-2
摘要

Accurate estimation of battery state of health is crucial for effective electric vehicle battery management. Here, we propose five health indicators that can be extracted online from real-world electric vehicle operation and develop a machine learning-based method to estimate the battery state of health. The proposed indicators provide physical insights into the energy and power fade of the battery and enable accurate capacity estimation even with partially missing data. Moreover, they can be computed for portions of the charging profile and real-world driving discharging conditions, facilitating real-time battery degradation estimation. The indicators are computed using experimental data from five cells aged under electric vehicle conditions, and a linear regression model is used to estimate the state of health. The results show that models trained with power autocorrelation and energy-based features achieve capacity estimation with maximum absolute percentage error within 1.5% to 2.5%. Andrea Lanubile and colleagues develop a machine learning-based algorithm to estimate battery state of health during real world operations. The proposed method leads to highly accurate estimation even when partial battery data are missing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
Leon发布了新的文献求助20
25秒前
26秒前
28秒前
Leon完成签到,获得积分10
36秒前
tingalan完成签到,获得积分0
36秒前
赵一完成签到 ,获得积分10
43秒前
55秒前
上官若男应助研友_拓跋戾采纳,获得10
1分钟前
Thi发布了新的文献求助10
1分钟前
无悔完成签到 ,获得积分0
1分钟前
笔墨纸砚完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Thi完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
吃饱再睡完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
酷酷的紫南完成签到 ,获得积分10
2分钟前
2分钟前
xue完成签到 ,获得积分10
2分钟前
冰凌心恋完成签到,获得积分10
2分钟前
2分钟前
www发布了新的文献求助10
2分钟前
hanlixuan完成签到 ,获得积分10
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
wanci应助john2333采纳,获得10
3分钟前
奋斗的小研完成签到,获得积分10
3分钟前
3分钟前
Jin完成签到,获得积分10
3分钟前
jin完成签到,获得积分10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715179
求助须知:如何正确求助?哪些是违规求助? 5231114
关于积分的说明 15274068
捐赠科研通 4866203
什么是DOI,文献DOI怎么找? 2612756
邀请新用户注册赠送积分活动 1562941
关于科研通互助平台的介绍 1520304