抗菌剂
材料科学
人造骨
生物医学工程
纳米技术
医学
微生物学
生物
复合材料
作者
Di Ying,Tianshou Zhang,Manlin Qi,Bing Han,Biao Dong
标识
DOI:10.1021/acsbiomaterials.4c01940
摘要
Infected bone defects, caused by bacterial contamination following disease or injury, result in the partial loss or destruction of bone tissue. Traditional bone transplantation and other clinical approaches often fail to address the therapeutic complexities of these conditions effectively. In recent years, advanced biomaterials have attracted significant attention for their potential to enhance treatment outcomes. This review explores the pathogenic mechanisms underlying infected bone defects, including biofilm formation and bacterial internalization into bone cells, which allow bacteria to evade the host immune system. To control bacterial infection and facilitate bone repair, we focus on antibacterial materials for bone regeneration. A detailed introduction is given on intrinsically antibacterial materials (e.g., metal alloys, oxide materials, carbon-based materials, hydroxyapatite, chitosan, and Sericin). The antibacterial functionality of bone repair materials can be enhanced through strategies such as the incorporation of antimicrobial ions, surface modification, and the combined use of multiple materials to treat infected bone defects. Key innovations discussed include biomaterials that release therapeutic agents, functional contact biomaterials, and bioresponsive materials, which collectively enhance antibacterial efficacy. Research on the clinical translation of antimicrobial bone materials has also facilitated their practical application in infection prevention and bone healing. In conclusion, advancements in biomaterials provide promising pathways for developing more biocompatible, effective, and personalized therapies to reconstruct infected bone defects.
科研通智能强力驱动
Strongly Powered by AbleSci AI