光催化
电荷(物理)
化学
化学工程
材料科学
光电子学
光化学
化学物理
纳米技术
物理
催化作用
工程类
有机化学
量子力学
作者
Jing Zhang,Xiuli Wang,Xiang Wang,Can Li
标识
DOI:10.1021/acs.accounts.4c00582
摘要
ConspectusThe conversion of solar energy into chemical energy is promising to address energy and environmental crises. For solar conversion processes, such as photocatalysis and photoelectrocatalysis, a deep understanding of the separation of photogenerated charges is pivotal for advancing material design and efficiency enhancement in solar energy conversion. Formation of a heterophase junction is an efficient strategy to improve photogenerated charge separation of photo(electro)catalysts for solar energy conversion processes. A heterophase junction is formed at the interface between the semiconductors possessing the same chemical composition with similar crystalline phase structures but slightly different energy bands. Despite the small offset of Fermi levels between the different phases, a built-in electric field is established at the interface of the heterophase junction, which can be the driving force for the photogenerated charge separation at the nanometer scale. Notably, slight variations in the energy band of the two crystalline phases result in small energy barriers for the photogenerated carrier transfer. Moreover, the structural similarity of the two different crystalline phases of a semiconductor could minimize the lattice mismatch at the heterophase junction, distinguishing it from a p/n junction or heterojunction formed between two very different semiconductors.This Account provides an overview of the understanding, design, and application of heterophase junctions in photocatalysis and photoelectrocatalysis. It begins with a conceptualization of the heterophase junction and reviews recent advances in the synthesis of semiconductors with a heterophase junction. The phase transformation method with the advantage of forming a heterophase junction with an atomically matched interface and the secondary seed growth method for unique structures with excellent electronic and optoelectronic properties are described. Furthermore, the mechanism of the heterophase junction for improving the photogenerated charge separation is discussed, followed by a comprehensive discussion of the structure-activity relationship for the heterophase junction. The home-built spatially resolved and time-resolved spectroscopies offer direct imaging of the built-in electric field across the heterophase junction and then the direct detection of the photogenerated charge transfer between the two crystalline phases driven by the built-in electric field. Such an efficient interfacial charge transfer results in the improvement of the photogenerated charge separation, a higher yield of long-lived charges, and thus the inhibition of the charge recombination. Benefiting from these insights, structural design strategies for the heterophase junction, such as precise tuning of band alignment, exposed heterophase amounts, phase alignment, and interface structure, have been developed. Finally, the challenges, opportunities, and perspectives of heterophase junctions in the design of advanced photo(electro)catalyst systems for solar energy to chemical energy conversion will be discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI