Variational Relational Point Completion Network for Robust 3D Classification

点云 计算机科学 稳健性(进化) 人工智能 概率逻辑 核(代数) 计算机视觉 路径(计算) 算法 模式识别(心理学) 数学 生物化学 化学 组合数学 基因 程序设计语言
作者
Liang Pan,Xinyi Chen,Zhongang Cai,Junzhe Zhang,Haiyu Zhao,Shuai Yi,Ziwei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (9): 11340-11351 被引量:9
标识
DOI:10.1109/tpami.2023.3268305
摘要

Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute multi-view partial point cloud datasets (MVP and MVP-40 dataset) containing over 200,000 high-quality scans, which render partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-the-art methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans. Moreover, we can achieve robust 3D classification for partial point clouds with the help of VRCNet, which can highly increase classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_ZzrWKZ完成签到 ,获得积分10
1秒前
Mae完成签到 ,获得积分10
1秒前
fuyg发布了新的文献求助10
2秒前
琥珀完成签到,获得积分10
3秒前
隐形曼青应助科研通管家采纳,获得30
3秒前
浪子应助科研通管家采纳,获得10
3秒前
浪子应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
xinL应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
4秒前
做实验的猹完成签到,获得积分10
4秒前
研友_LXdbaL完成签到,获得积分10
5秒前
平常的问雁完成签到 ,获得积分10
6秒前
拉长的秋白完成签到 ,获得积分10
7秒前
7秒前
7秒前
唐泽雪穗发布了新的文献求助40
7秒前
温柔凝竹完成签到,获得积分10
7秒前
ju00完成签到,获得积分10
8秒前
9秒前
Man_proposes完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助150
10秒前
11秒前
huanir99完成签到 ,获得积分10
12秒前
aub发布了新的文献求助10
12秒前
宁annie完成签到,获得积分10
13秒前
拉稀摆带完成签到 ,获得积分10
13秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
14秒前
北秋生完成签到,获得积分10
15秒前
Callmeteji完成签到,获得积分10
15秒前
稳重紫丝完成签到,获得积分20
16秒前
暗栀发布了新的文献求助10
20秒前
Beyond完成签到,获得积分10
20秒前
狼牧羊城完成签到,获得积分10
20秒前
爱笑的冷风完成签到 ,获得积分10
21秒前
ldd完成签到,获得积分10
22秒前
Nancy完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066929
求助须知:如何正确求助?哪些是违规求助? 4288826
关于积分的说明 13360633
捐赠科研通 4108243
什么是DOI,文献DOI怎么找? 2249583
邀请新用户注册赠送积分活动 1255049
关于科研通互助平台的介绍 1187520