Variational Relational Point Completion Network for Robust 3D Classification

点云 计算机科学 稳健性(进化) 人工智能 概率逻辑 核(代数) 计算机视觉 路径(计算) 算法 模式识别(心理学) 数学 生物化学 基因 组合数学 化学 程序设计语言
作者
Liang Pan,Xinyi Chen,Zhongang Cai,Junzhe Zhang,Haiyu Zhao,Shuai Yi,Ziwei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 11340-11351 被引量:9
标识
DOI:10.1109/tpami.2023.3268305
摘要

Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute multi-view partial point cloud datasets (MVP and MVP-40 dataset) containing over 200,000 high-quality scans, which render partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-the-art methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans. Moreover, we can achieve robust 3D classification for partial point clouds with the help of VRCNet, which can highly increase classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
springlover完成签到,获得积分10
刚刚
约定发布了新的文献求助10
刚刚
bkagyin应助xxx采纳,获得10
刚刚
萨芬撒完成签到,获得积分10
刚刚
Xixicccccccc发布了新的文献求助10
刚刚
专注的问寒举报MC番薯求助涉嫌违规
1秒前
CipherSage应助Alan采纳,获得10
1秒前
xcm77发布了新的文献求助10
1秒前
释棱完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助30
2秒前
2秒前
Ayn发布了新的文献求助10
2秒前
You发布了新的文献求助10
2秒前
3秒前
5秒前
FashionBoy应助科研民工采纳,获得10
6秒前
灿烂千阳完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
NXK发布了新的文献求助10
7秒前
7秒前
7秒前
SciGPT应助no1isme采纳,获得10
7秒前
瓜瓜发布了新的文献求助10
7秒前
饱满的诗霜关注了科研通微信公众号
8秒前
cc应助wing采纳,获得20
8秒前
211发布了新的文献求助10
8秒前
修越完成签到,获得积分10
9秒前
CodeCraft应助Regina采纳,获得10
9秒前
情怀应助xixilamn采纳,获得10
9秒前
壮壮发布了新的文献求助10
10秒前
在水一方应助小新同学采纳,获得10
10秒前
11秒前
11秒前
Owen应助sule采纳,获得10
11秒前
11秒前
修越发布了新的文献求助10
11秒前
大模型应助荻野千寻采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932