Variational Relational Point Completion Network for Robust 3D Classification

点云 计算机科学 稳健性(进化) 人工智能 概率逻辑 核(代数) 计算机视觉 路径(计算) 算法 模式识别(心理学) 数学 生物化学 基因 组合数学 化学 程序设计语言
作者
Liang Pan,Xinyi Chen,Zhongang Cai,Junzhe Zhang,Haiyu Zhao,Shuai Yi,Ziwei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 11340-11351 被引量:9
标识
DOI:10.1109/tpami.2023.3268305
摘要

Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute multi-view partial point cloud datasets (MVP and MVP-40 dataset) containing over 200,000 high-quality scans, which render partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-the-art methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans. Moreover, we can achieve robust 3D classification for partial point clouds with the help of VRCNet, which can highly increase classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小滕同学完成签到 ,获得积分10
刚刚
loveuso应助李7采纳,获得10
1秒前
无限的棒球完成签到,获得积分10
1秒前
ding应助专注的开山采纳,获得10
1秒前
无名完成签到,获得积分10
1秒前
zxy完成签到,获得积分10
2秒前
科研通AI6应助Violet采纳,获得30
2秒前
晴清发布了新的文献求助10
2秒前
2秒前
yangshuai完成签到 ,获得积分10
2秒前
JT发布了新的文献求助10
2秒前
纪翎完成签到,获得积分10
2秒前
dandan完成签到,获得积分10
2秒前
橙子完成签到,获得积分10
3秒前
于瑜与余完成签到 ,获得积分10
4秒前
听雨眠完成签到 ,获得积分10
5秒前
852应助xxy采纳,获得10
5秒前
5秒前
美梦成真福禄寿完成签到 ,获得积分10
6秒前
万能图书馆应助幻心采纳,获得10
6秒前
叶子完成签到 ,获得积分10
6秒前
共享精神应助naturehome采纳,获得10
6秒前
称心乐枫完成签到,获得积分10
7秒前
研友_84mPRL发布了新的文献求助10
7秒前
辛勤安梦完成签到,获得积分10
7秒前
健忘惜海完成签到,获得积分10
7秒前
7秒前
JIN发布了新的文献求助10
7秒前
7秒前
atonnng发布了新的文献求助30
7秒前
kk99123应助毕业即胜利采纳,获得10
8秒前
wlscj应助jjj采纳,获得20
8秒前
淡定草丛完成签到 ,获得积分10
8秒前
ccc完成签到 ,获得积分10
8秒前
繁荣的安双完成签到,获得积分10
9秒前
9秒前
小唐完成签到,获得积分10
9秒前
snowpie完成签到 ,获得积分10
9秒前
Tim完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439