Variational Relational Point Completion Network for Robust 3D Classification

点云 计算机科学 稳健性(进化) 人工智能 概率逻辑 核(代数) 计算机视觉 路径(计算) 算法 模式识别(心理学) 数学 生物化学 基因 组合数学 化学 程序设计语言
作者
Liang Pan,Xinyi Chen,Zhongang Cai,Junzhe Zhang,Haiyu Zhao,Shuai Yi,Ziwei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 11340-11351 被引量:9
标识
DOI:10.1109/tpami.2023.3268305
摘要

Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute multi-view partial point cloud datasets (MVP and MVP-40 dataset) containing over 200,000 high-quality scans, which render partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-the-art methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans. Moreover, we can achieve robust 3D classification for partial point clouds with the help of VRCNet, which can highly increase classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQ完成签到,获得积分10
刚刚
wgt发布了新的文献求助10
刚刚
李爱国应助gao采纳,获得10
刚刚
刚刚
supertkeb完成签到,获得积分10
1秒前
ff完成签到,获得积分10
1秒前
王进完成签到,获得积分10
1秒前
1秒前
1秒前
姚玲发布了新的文献求助10
2秒前
黄学生完成签到 ,获得积分10
2秒前
maaicui完成签到,获得积分10
2秒前
周稅完成签到,获得积分10
3秒前
liujiahao完成签到,获得积分10
3秒前
slm完成签到,获得积分10
3秒前
4秒前
科研牛马人完成签到,获得积分10
4秒前
Emma完成签到 ,获得积分10
4秒前
wqm完成签到 ,获得积分10
4秒前
搞怪的友桃完成签到,获得积分10
5秒前
自然发布了新的文献求助10
5秒前
从容的尔云完成签到 ,获得积分10
6秒前
May完成签到,获得积分10
6秒前
6秒前
xx发布了新的文献求助10
8秒前
8秒前
lseonf完成签到,获得积分20
8秒前
8秒前
dbhfdgsh完成签到,获得积分10
9秒前
BallQ完成签到,获得积分10
9秒前
9秒前
三三得九完成签到 ,获得积分10
9秒前
听风完成签到,获得积分10
9秒前
EMMA完成签到,获得积分10
10秒前
wgt完成签到,获得积分10
10秒前
jstagey完成签到,获得积分10
10秒前
HCQ完成签到,获得积分10
10秒前
zy完成签到,获得积分10
11秒前
11秒前
夜阑卧听完成签到,获得积分0
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568452
求助须知:如何正确求助?哪些是违规求助? 4653069
关于积分的说明 14703693
捐赠科研通 4594883
什么是DOI,文献DOI怎么找? 2521327
邀请新用户注册赠送积分活动 1492973
关于科研通互助平台的介绍 1463778