Variational Relational Point Completion Network for Robust 3D Classification

点云 计算机科学 稳健性(进化) 人工智能 概率逻辑 核(代数) 计算机视觉 路径(计算) 算法 模式识别(心理学) 数学 生物化学 基因 组合数学 化学 程序设计语言
作者
Liang Pan,Xinyi Chen,Zhongang Cai,Junzhe Zhang,Haiyu Zhao,Shuai Yi,Ziwei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (9): 11340-11351 被引量:9
标识
DOI:10.1109/tpami.2023.3268305
摘要

Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute multi-view partial point cloud datasets (MVP and MVP-40 dataset) containing over 200,000 high-quality scans, which render partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-the-art methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans. Moreover, we can achieve robust 3D classification for partial point clouds with the help of VRCNet, which can highly increase classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy.发布了新的文献求助100
1秒前
1秒前
1秒前
贪玩鸵鸟完成签到,获得积分10
1秒前
1秒前
xiao完成签到,获得积分10
2秒前
烟花应助刘婧采纳,获得10
2秒前
ll驳回了Xiaoxiao应助
2秒前
nena发布了新的文献求助10
2秒前
2秒前
可爱的函函应助HCKACECE采纳,获得30
3秒前
ttt77发布了新的文献求助10
3秒前
十八冠六完成签到,获得积分10
3秒前
3秒前
3秒前
liu完成签到,获得积分10
3秒前
3秒前
余海燕发布了新的文献求助10
3秒前
江一帆发布了新的文献求助10
4秒前
莫寒兮完成签到,获得积分10
4秒前
小马甲应助liaoliao采纳,获得10
4秒前
CipherSage应助喜多米430采纳,获得10
4秒前
柿柿如意完成签到,获得积分10
4秒前
roywin完成签到,获得积分10
4秒前
天天快乐应助Qionglin采纳,获得10
5秒前
5秒前
至幸发布了新的文献求助10
6秒前
6秒前
wang发布了新的文献求助10
6秒前
wanci应助易烊干洗采纳,获得10
6秒前
xiao发布了新的文献求助10
7秒前
潇洒的翠丝完成签到,获得积分10
7秒前
tiasn发布了新的文献求助10
7秒前
8秒前
炫酷火锅完成签到,获得积分10
8秒前
li发布了新的文献求助10
8秒前
8秒前
zz完成签到,获得积分10
8秒前
传奇3应助小先生采纳,获得10
9秒前
英姑应助小嘻嘻采纳,获得10
9秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238122
求助须知:如何正确求助?哪些是违规求助? 4405802
关于积分的说明 13711768
捐赠科研通 4274090
什么是DOI,文献DOI怎么找? 2345419
邀请新用户注册赠送积分活动 1342496
关于科研通互助平台的介绍 1300416