Variational Relational Point Completion Network for Robust 3D Classification

点云 计算机科学 稳健性(进化) 人工智能 概率逻辑 核(代数) 计算机视觉 路径(计算) 算法 模式识别(心理学) 数学 生物化学 基因 组合数学 化学 程序设计语言
作者
Liang Pan,Xinyi Chen,Zhongang Cai,Junzhe Zhang,Haiyu Zhao,Shuai Yi,Ziwei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (9): 11340-11351 被引量:9
标识
DOI:10.1109/tpami.2023.3268305
摘要

Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute multi-view partial point cloud datasets (MVP and MVP-40 dataset) containing over 200,000 high-quality scans, which render partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-the-art methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans. Moreover, we can achieve robust 3D classification for partial point clouds with the help of VRCNet, which can highly increase classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董竹君完成签到,获得积分10
刚刚
俭朴的天曼完成签到,获得积分10
刚刚
Lucas应助顺心的翠丝采纳,获得10
1秒前
李田田完成签到,获得积分20
1秒前
1秒前
义气乐儿发布了新的文献求助10
1秒前
宅心仁厚完成签到 ,获得积分10
2秒前
2秒前
骑猪看日落完成签到,获得积分10
2秒前
冥冥之极为昭昭完成签到,获得积分10
2秒前
繁荣的又夏完成签到,获得积分10
3秒前
3秒前
嗝嗝完成签到,获得积分10
3秒前
4秒前
Windsyang完成签到,获得积分10
4秒前
cs完成签到,获得积分10
5秒前
wanci应助小蜜蜂采纳,获得10
5秒前
拉瓦锡不爱化学完成签到,获得积分10
6秒前
三笠完成签到,获得积分10
7秒前
cmuwinni完成签到,获得积分10
7秒前
爆米花应助ddffgz采纳,获得30
8秒前
在水一方应助YY采纳,获得10
8秒前
实验耗材发布了新的文献求助10
8秒前
孤独听雨的猫完成签到 ,获得积分10
8秒前
Andy.发布了新的文献求助10
8秒前
李大侠完成签到,获得积分10
8秒前
陌路完成签到,获得积分10
9秒前
9秒前
9秒前
南亭完成签到,获得积分10
10秒前
Akim应助MAOJCFK采纳,获得10
11秒前
朱朱朱完成签到,获得积分10
11秒前
淡淡的士晋完成签到,获得积分10
11秒前
11秒前
Ma_J完成签到 ,获得积分10
12秒前
12秒前
何来宝完成签到,获得积分10
13秒前
橘子完成签到,获得积分10
14秒前
远航发布了新的文献求助30
14秒前
小蘑菇应助falling_learning采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027