亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Variational Relational Point Completion Network for Robust 3D Classification

点云 计算机科学 稳健性(进化) 人工智能 概率逻辑 核(代数) 计算机视觉 路径(计算) 算法 模式识别(心理学) 数学 生物化学 基因 组合数学 化学 程序设计语言
作者
Liang Pan,Xinyi Chen,Zhongang Cai,Junzhe Zhang,Haiyu Zhao,Shuai Yi,Ziwei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 11340-11351 被引量:9
标识
DOI:10.1109/tpami.2023.3268305
摘要

Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute multi-view partial point cloud datasets (MVP and MVP-40 dataset) containing over 200,000 high-quality scans, which render partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-the-art methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans. Moreover, we can achieve robust 3D classification for partial point clouds with the help of VRCNet, which can highly increase classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
阿亮完成签到,获得积分10
9秒前
ding应助石榴汁的书采纳,获得10
19秒前
21秒前
阿亮发布了新的文献求助20
22秒前
研友_VZG7GZ应助吴浣采纳,获得10
28秒前
28秒前
Orange应助Dreamchaser采纳,获得10
36秒前
52秒前
科研通AI6应助tracer526采纳,获得10
1分钟前
1分钟前
mc小胖羊发布了新的文献求助10
1分钟前
科研通AI6应助tracer526采纳,获得10
1分钟前
1分钟前
冷傲迎梅完成签到 ,获得积分10
1分钟前
Jasper应助tracer526采纳,获得10
1分钟前
mc小胖羊发布了新的文献求助10
1分钟前
1分钟前
1分钟前
罗伊黄发布了新的文献求助10
1分钟前
xiaoyu完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
火星上念梦完成签到,获得积分10
2分钟前
2分钟前
2分钟前
kkm完成签到,获得积分10
2分钟前
2分钟前
丘比特应助kkm采纳,获得10
2分钟前
yys10l完成签到,获得积分10
2分钟前
yys完成签到,获得积分10
2分钟前
mc小胖羊发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助tracer526采纳,获得10
2分钟前
浮游应助sherry采纳,获得10
2分钟前
3分钟前
3分钟前
tracer526发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418317
求助须知:如何正确求助?哪些是违规求助? 4534007
关于积分的说明 14143021
捐赠科研通 4450303
什么是DOI,文献DOI怎么找? 2441153
邀请新用户注册赠送积分活动 1432905
关于科研通互助平台的介绍 1410263