已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Variational Relational Point Completion Network for Robust 3D Classification

点云 计算机科学 稳健性(进化) 人工智能 概率逻辑 核(代数) 计算机视觉 路径(计算) 算法 模式识别(心理学) 数学 生物化学 基因 组合数学 化学 程序设计语言
作者
Liang Pan,Xinyi Chen,Zhongang Cai,Junzhe Zhang,Haiyu Zhao,Shuai Yi,Ziwei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 11340-11351 被引量:9
标识
DOI:10.1109/tpami.2023.3268305
摘要

Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute multi-view partial point cloud datasets (MVP and MVP-40 dataset) containing over 200,000 high-quality scans, which render partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-the-art methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans. Moreover, we can achieve robust 3D classification for partial point clouds with the help of VRCNet, which can highly increase classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻哈哈应助Jourmore采纳,获得10
1秒前
科研通AI2S应助维尼采纳,获得10
1秒前
小叶不吃香菜完成签到,获得积分10
2秒前
kw87完成签到,获得积分10
3秒前
3秒前
3秒前
科研通AI2S应助干鞅采纳,获得10
3秒前
11112321321发布了新的文献求助10
4秒前
完美世界应助pandaheld采纳,获得10
4秒前
科研通AI6应助ZM采纳,获得10
5秒前
6秒前
朴实子骞完成签到 ,获得积分10
8秒前
美丽的冰枫完成签到,获得积分10
9秒前
9秒前
Ava应助聪明的秋尽采纳,获得10
9秒前
maowei完成签到,获得积分10
10秒前
zhizhi完成签到 ,获得积分10
11秒前
七一桉完成签到 ,获得积分10
11秒前
hitzwd完成签到,获得积分10
12秒前
阿良完成签到,获得积分10
12秒前
张蕊发布了新的文献求助10
15秒前
yj完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
17秒前
18秒前
18秒前
搞怪的太阳完成签到,获得积分10
19秒前
FashionBoy应助GY采纳,获得10
19秒前
19秒前
saflgf发布了新的文献求助30
21秒前
21秒前
dereje发布了新的文献求助10
21秒前
bobo发布了新的文献求助10
21秒前
Rosie完成签到,获得积分10
22秒前
桃七七完成签到 ,获得积分10
22秒前
沐风发布了新的文献求助10
22秒前
cmz发布了新的文献求助10
22秒前
干鞅发布了新的文献求助10
23秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384713
求助须知:如何正确求助?哪些是违规求助? 4507566
关于积分的说明 14028354
捐赠科研通 4417204
什么是DOI,文献DOI怎么找? 2426357
邀请新用户注册赠送积分活动 1419123
关于科研通互助平台的介绍 1397426