Variational Relational Point Completion Network for Robust 3D Classification

点云 计算机科学 稳健性(进化) 人工智能 概率逻辑 核(代数) 计算机视觉 路径(计算) 算法 模式识别(心理学) 数学 生物化学 基因 组合数学 化学 程序设计语言
作者
Liang Pan,Xinyi Chen,Zhongang Cai,Junzhe Zhang,Haiyu Zhao,Shuai Yi,Ziwei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 11340-11351 被引量:9
标识
DOI:10.1109/tpami.2023.3268305
摘要

Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute multi-view partial point cloud datasets (MVP and MVP-40 dataset) containing over 200,000 high-quality scans, which render partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-the-art methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans. Moreover, we can achieve robust 3D classification for partial point clouds with the help of VRCNet, which can highly increase classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
烤肠发布了新的文献求助10
1秒前
tobino1发布了新的文献求助10
1秒前
2秒前
2秒前
zzzdx发布了新的文献求助10
2秒前
trophozoite发布了新的文献求助10
3秒前
情怀应助烤肠采纳,获得10
6秒前
ZZK发布了新的文献求助10
6秒前
Tina发布了新的文献求助10
7秒前
mwiyi完成签到,获得积分10
7秒前
7秒前
慧慧发布了新的文献求助10
7秒前
7秒前
Kingzd完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
tly完成签到,获得积分10
11秒前
魔王小豆包完成签到,获得积分10
12秒前
12秒前
13秒前
舒心的紫雪完成签到 ,获得积分10
14秒前
16秒前
一粒苹果酒完成签到,获得积分10
16秒前
17秒前
阿西吧完成签到,获得积分10
18秒前
19秒前
19秒前
小乐发布了新的文献求助10
19秒前
19秒前
傅剑寒发布了新的文献求助30
19秒前
瓜6发布了新的文献求助10
20秒前
十是十发布了新的文献求助10
20秒前
科研通AI6应助山逍采纳,获得10
20秒前
Tom完成签到 ,获得积分10
21秒前
21秒前
傲娇芷容完成签到,获得积分20
23秒前
林新杰发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354788
求助须知:如何正确求助?哪些是违规求助? 4486810
关于积分的说明 13967969
捐赠科研通 4387444
什么是DOI,文献DOI怎么找? 2410377
邀请新用户注册赠送积分活动 1402786
关于科研通互助平台的介绍 1376566