Variational Relational Point Completion Network for Robust 3D Classification

点云 计算机科学 稳健性(进化) 人工智能 概率逻辑 核(代数) 计算机视觉 路径(计算) 算法 模式识别(心理学) 数学 生物化学 基因 组合数学 化学 程序设计语言
作者
Liang Pan,Xinyi Chen,Zhongang Cai,Junzhe Zhang,Haiyu Zhao,Shuai Yi,Ziwei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 11340-11351 被引量:9
标识
DOI:10.1109/tpami.2023.3268305
摘要

Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute multi-view partial point cloud datasets (MVP and MVP-40 dataset) containing over 200,000 high-quality scans, which render partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-the-art methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans. Moreover, we can achieve robust 3D classification for partial point clouds with the help of VRCNet, which can highly increase classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芯梓12完成签到 ,获得积分10
1秒前
dai完成签到,获得积分10
1秒前
精明的听寒完成签到,获得积分10
1秒前
善学以致用应助yuanyuan采纳,获得10
1秒前
百事可乐完成签到,获得积分10
2秒前
li完成签到 ,获得积分10
2秒前
Ling发布了新的文献求助10
2秒前
2秒前
3秒前
5秒前
7秒前
蝉鸣完成签到 ,获得积分10
7秒前
danli发布了新的文献求助10
7秒前
桐桐应助wuxunxun2015采纳,获得10
8秒前
8秒前
小竹完成签到 ,获得积分10
8秒前
喵咪西西发布了新的文献求助10
8秒前
啦啦啦啦呼完成签到,获得积分10
9秒前
9秒前
13秒前
ding应助morry5007采纳,获得10
14秒前
14秒前
16秒前
16秒前
17秒前
嘛呱完成签到,获得积分10
18秒前
18秒前
lingzhi发布了新的文献求助10
19秒前
zjw完成签到 ,获得积分10
19秒前
19秒前
ATBG55完成签到 ,获得积分10
21秒前
小不点发布了新的文献求助10
21秒前
21秒前
英俊的铭应助付清采纳,获得10
21秒前
少艾发布了新的文献求助10
23秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
yx完成签到,获得积分10
25秒前
7747完成签到 ,获得积分10
26秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598772
求助须知:如何正确求助?哪些是违规求助? 4684180
关于积分的说明 14834106
捐赠科研通 4664702
什么是DOI,文献DOI怎么找? 2537384
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470606