期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers] 日期:2023-05-03卷期号:31 (11): 3959-3973被引量:9
标识
DOI:10.1109/tfuzz.2023.3272157
摘要
Feature selection method with rough sets based on incremental learning has the major advantage of the higher efficiency in a dynamic information system, which has attracted extensive research. However, the incremental approximation feature selection with an accelerator (IAFSA) remains ambiguous for a dynamic information system with fuzzy decisions (ISFD). Driven by this concern, the nonincremental approximation feature selection is first presented by fuzzy knowledge distance (FKD). Second, the incremental theory of FKD is constructed with a batch of objects appended to or removed from the dynamic ISFD. Subsequently, an acceleration mechanism to eliminate redundant information granules is developed to reduce the sample space. Eventually, two categories of IAFSA based on FKD are presented. The experiments reflect the efficiency and effectiveness of the developed IAFSA algorithms.