Machine learning predicts the risk of hemorrhagic transformation of acute cerebral infarction and in-hospital death

医学 队列 内科学 接收机工作特性 溶栓 机器学习 肌酐 心脏病学 人工智能 算法 心肌梗塞 计算机科学
作者
Xuewen Li,Changyan Xu,Chengming Shang,Yi‐Ting Wang,Jiancheng Xu,Qi Zhou
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:237: 107582-107582 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107582
摘要

The incidence of hemorrhagic transformation (HT) during thrombolysis after acute cerebral infarction (ACI) is very high. We aimed to develop a model to predict the occurrence of HT after ACI and the risk of death after HT.Cohort 1 is divided into HT and non-HT groups, to train the model and perform internal validation. All first laboratory test results of study subjects were used as features to be selected for machine learning, and the models built by four machine learning algorithms were compared to screen the best algorithm and model. Following that, the HT group was divided into death and non-death for subgroup analysis. Receiver operating characteristic (ROC) curves etc. to evaluate the model. ACI patients in cohort 2 for external validation.In cohort 1, the HT risk prediction model HT-Lab10 built by the XgBoost algorithm performed the best with AUCROC=0.95 (95% CI, 0.93-0.96). Ten features were included in the model, namely B-type natriuretic peptide precursor, ultrasensitive C-reactive protein, glucose, absolute neutrophil value, myoglobin, uric acid, creatinine, Ca2+, Thrombin time, and carbon dioxide combining power. The model also had the ability to predict death after HT with AUCROC=0.85 (95% CI, 0.78-0.91). The ability of HT-Lab10 to predict the occurrence of HT as well as death after HT was validated in cohort 2.The model HT-Lab10 built using the XgBoost algorithm showed excellent predictive ability in both the occurrence of HT and the risk of HT death, achieving a model with multiple uses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哦耶zyy发布了新的文献求助10
刚刚
早睡能长个完成签到,获得积分10
1秒前
bkagyin应助B612小行星采纳,获得10
1秒前
书信完成签到,获得积分10
2秒前
冷月完成签到,获得积分10
2秒前
qq596发布了新的文献求助10
3秒前
3秒前
NexusExplorer应助无处不在采纳,获得10
4秒前
科目三应助怡然的飞珍采纳,获得10
4秒前
123发布了新的文献求助10
4秒前
5秒前
科研通AI5应助简单的期待采纳,获得10
6秒前
6秒前
pokexuejiao完成签到,获得积分10
6秒前
6秒前
Fang发布了新的文献求助10
6秒前
齐刘海完成签到,获得积分10
7秒前
7秒前
Jasper应助呆萌棒棒糖采纳,获得10
7秒前
7秒前
CipherSage应助笨笨采纳,获得10
7秒前
科研通AI2S应助岳小龙采纳,获得10
7秒前
王友完成签到,获得积分20
8秒前
9秒前
bkagyin应助落骛采纳,获得10
9秒前
啾啾发布了新的文献求助10
9秒前
lqy发布了新的文献求助30
10秒前
11秒前
科研通AI5应助苏杰采纳,获得10
11秒前
科研通AI2S应助岳小龙采纳,获得10
11秒前
MWY完成签到,获得积分20
11秒前
11秒前
灵巧妙芙完成签到,获得积分10
12秒前
王友发布了新的文献求助10
12秒前
李健的小迷弟应助123采纳,获得10
12秒前
Ava应助joicy采纳,获得10
12秒前
枫叶发布了新的文献求助10
12秒前
12秒前
隐形曼青应助妥妥酱采纳,获得10
13秒前
梦蝴蝶应助Sx13a采纳,获得50
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515510
求助须知:如何正确求助?哪些是违规求助? 3097850
关于积分的说明 9236939
捐赠科研通 2792825
什么是DOI,文献DOI怎么找? 1532705
邀请新用户注册赠送积分活动 712209
科研通“疑难数据库(出版商)”最低求助积分说明 707201