模态(人机交互)
计算机科学
模式
任务(项目管理)
人工智能
机器学习
情态动词
表达式(计算机科学)
数据集成
数据类型
深度学习
数据挖掘
社会学
经济
化学
管理
高分子化学
程序设计语言
社会科学
作者
Xin Tang,Jiawei Zhang,Yichun He,Xinhe Zhang,Zuwan Lin,Sebastian Partarrieu,Emma Bou Hanna,Zhaolin Ren,Hao Shen,Yuhong Yang,Xiao Wang,Na Li,Jie Ding,Jia Liu
标识
DOI:10.1038/s41467-023-37477-x
摘要
Current biotechnologies can simultaneously measure multiple high-dimensional modalities (e.g., RNA, DNA accessibility, and protein) from the same cells. A combination of different analytical tasks (e.g., multi-modal integration and cross-modal analysis) is required to comprehensively understand such data, inferring how gene regulation drives biological diversity and functions. However, current analytical methods are designed to perform a single task, only providing a partial picture of the multi-modal data. Here, we present UnitedNet, an explainable multi-task deep neural network capable of integrating different tasks to analyze single-cell multi-modality data. Applied to various multi-modality datasets (e.g., Patch-seq, multiome ATAC + gene expression, and spatial transcriptomics), UnitedNet demonstrates similar or better accuracy in multi-modal integration and cross-modal prediction compared with state-of-the-art methods. Moreover, by dissecting the trained UnitedNet with the explainable machine learning algorithm, we can directly quantify the relationship between gene expression and other modalities with cell-type specificity. UnitedNet is a comprehensive end-to-end framework that could be broadly applicable to single-cell multi-modality biology. This framework has the potential to facilitate the discovery of cell-type-specific regulation kinetics across transcriptomics and other modalities.
科研通智能强力驱动
Strongly Powered by AbleSci AI