核孔
核孔蛋白
内在无序蛋白质
核运输
核心
细胞质
生物物理学
胞浆
蛋白质组
原位
化学
细胞生物学
生物
细胞核
生物化学
有机化学
酶
作者
Miao Yu,Maziar Heidari,Sofya Mikhaleva,Piau Siong Tan,Sara Mingu,Hao Ruan,Christopher D. Reinkemeier,Agnieszka Obarska-Kosińska,Marc Siggel,Martin Beck,Gerhard Hummer,Edward A. Lemke
出处
期刊:Nature
[Springer Nature]
日期:2023-04-26
卷期号:617 (7959): 162-169
被引量:52
标识
DOI:10.1038/s41586-023-05990-0
摘要
Abstract The approximately 120 MDa mammalian nuclear pore complex (NPC) acts as a gatekeeper for the transport between the nucleus and cytosol 1 . The central channel of the NPC is filled with hundreds of intrinsically disordered proteins (IDPs) called FG-nucleoporins (FG-NUPs) 2,3 . Although the structure of the NPC scaffold has been resolved in remarkable detail, the actual transport machinery built up by FG-NUPs—about 50 MDa—is depicted as an approximately 60-nm hole in even highly resolved tomograms and/or structures computed with artificial intelligence 4–11 . Here we directly probed conformations of the vital FG-NUP98 inside NPCs in live cells and in permeabilized cells with an intact transport machinery by using a synthetic biology-enabled site-specific small-molecule labelling approach paired with highly time-resolved fluorescence microscopy. Single permeabilized cell measurements of the distance distribution of FG-NUP98 segments combined with coarse-grained molecular simulations of the NPC allowed us to map the uncharted molecular environment inside the nanosized transport channel. We determined that the channel provides—in the terminology of the Flory polymer theory 12 —a ‘good solvent’ environment. This enables the FG domain to adopt expanded conformations and thus control transport between the nucleus and cytoplasm. With more than 30% of the proteome being formed from IDPs, our study opens a window into resolving disorder–function relationships of IDPs in situ, which are important in various processes, such as cellular signalling, phase separation, ageing and viral entry.
科研通智能强力驱动
Strongly Powered by AbleSci AI