Visualizing the disordered nuclear transport machinery in situ

核孔 核孔蛋白 内在无序蛋白质 核运输 核心 细胞质 生物物理学 胞浆 蛋白质组 原位 化学 细胞生物学 生物 细胞核 生物化学 有机化学
作者
Miao Yu,Maziar Heidari,Sofya Mikhaleva,Piau Siong Tan,Sara Mingu,Hao Ruan,Christopher D. Reinkemeier,Agnieszka Obarska-Kosińska,Marc Siggel,Martin Beck,Gerhard Hummer,Edward A. Lemke
出处
期刊:Nature [Springer Nature]
卷期号:617 (7959): 162-169 被引量:52
标识
DOI:10.1038/s41586-023-05990-0
摘要

Abstract The approximately 120 MDa mammalian nuclear pore complex (NPC) acts as a gatekeeper for the transport between the nucleus and cytosol 1 . The central channel of the NPC is filled with hundreds of intrinsically disordered proteins (IDPs) called FG-nucleoporins (FG-NUPs) 2,3 . Although the structure of the NPC scaffold has been resolved in remarkable detail, the actual transport machinery built up by FG-NUPs—about 50 MDa—is depicted as an approximately 60-nm hole in even highly resolved tomograms and/or structures computed with artificial intelligence 4–11 . Here we directly probed conformations of the vital FG-NUP98 inside NPCs in live cells and in permeabilized cells with an intact transport machinery by using a synthetic biology-enabled site-specific small-molecule labelling approach paired with highly time-resolved fluorescence microscopy. Single permeabilized cell measurements of the distance distribution of FG-NUP98 segments combined with coarse-grained molecular simulations of the NPC allowed us to map the uncharted molecular environment inside the nanosized transport channel. We determined that the channel provides—in the terminology of the Flory polymer theory 12 —a ‘good solvent’ environment. This enables the FG domain to adopt expanded conformations and thus control transport between the nucleus and cytoplasm. With more than 30% of the proteome being formed from IDPs, our study opens a window into resolving disorder–function relationships of IDPs in situ, which are important in various processes, such as cellular signalling, phase separation, ageing and viral entry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助无情的白桃采纳,获得10
1秒前
Li猪猪完成签到,获得积分10
1秒前
2秒前
怕孤独的白梦完成签到,获得积分20
2秒前
3秒前
鳗鱼灵寒发布了新的文献求助10
3秒前
潇洒的青完成签到,获得积分10
3秒前
眼里有光的阿墨完成签到 ,获得积分10
4秒前
4秒前
4秒前
GG完成签到,获得积分10
4秒前
隐形曼青应助garyaa采纳,获得10
4秒前
sweetbearm应助通~采纳,获得10
5秒前
锋feng完成签到 ,获得积分10
5秒前
Sofia完成签到,获得积分0
6秒前
6秒前
天人合一完成签到,获得积分0
7秒前
7秒前
所所应助MailkMonk采纳,获得10
7秒前
穆茹妖发布了新的文献求助10
8秒前
8秒前
9秒前
dddd完成签到,获得积分10
10秒前
zhui发布了新的文献求助10
10秒前
八十发布了新的文献求助10
11秒前
鹿芩完成签到,获得积分10
12秒前
luxxxiu完成签到,获得积分10
14秒前
顺顺关注了科研通微信公众号
14秒前
眼睛大老姆完成签到,获得积分10
14秒前
18275412695完成签到,获得积分10
14秒前
15秒前
科目三应助xjtu采纳,获得10
15秒前
16秒前
16秒前
在水一方应助热情芝麻采纳,获得10
16秒前
害羞的玉米完成签到,获得积分10
16秒前
18秒前
18秒前
李来仪发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794