MSM-ViT: A multi-scale MobileViT for pulmonary nodule classification using CT images

人工智能 模式识别(心理学) 计算机科学 比例(比率) 一般化 结核(地质) 卷积(计算机科学) 数学 人工神经网络 量子力学 生物 物理 数学分析 古生物学
作者
Keyan Cao,Hangbo Tao,Zhiqiong Wang,Xi Jin
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:31 (4): 731-744 被引量:6
标识
DOI:10.3233/xst-230014
摘要

Accurate classification of benign and malignant pulmonary nodules using chest computed tomography (CT) images is important for early diagnosis and treatment of lung cancer. In terms of natural image classification, the ViT-based model has greater advantages in extracting global features than the traditional CNN model. However, due to the small image dataset and low image resolution, it is difficult to directly apply the ViT-based model to pulmonary nodule classification.To propose and test a new ViT-based MSM-ViT model aiming to achieve good performance in classifying pulmonary nodules.In this study, CNN structure was used in the task of classifying pulmonary nodules to compensate for the poor generalization of ViT structure and the difficulty in extracting multi-scale features. First, sub-pixel fusion was designed to improve the ability of the model to extract tiny features. Second, multi-scale local features were extracted by combining dilated convolution with ordinary convolution. Finally, MobileViT module was used to extract global features and predict them at the spatial level.CT images involving 442 benign nodules and 406 malignant nodules were extracted from LIDC-IDRI data set to verify model performance, which yielded the best accuracy of 94.04% and AUC value of 0.9636 after 10 cross-validations.The proposed new model can effectively extract multi-scale local and global features. The new model performance is also comparable to the most advanced models that use 3D volume data training, but its occupation of video memory (training resources) is less than 1/10 of the conventional 3D models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈喽完成签到,获得积分10
刚刚
潘爱玲发布了新的文献求助10
刚刚
翻译度完成签到,获得积分10
1秒前
1秒前
3秒前
情怀应助江小白采纳,获得10
3秒前
郜以寒发布了新的文献求助10
6秒前
jyy应助王王王采纳,获得50
7秒前
8秒前
卖鱼的乌鸦完成签到,获得积分10
9秒前
10秒前
爆米花应助糖豆采纳,获得10
10秒前
11秒前
沈吃吃关注了科研通微信公众号
11秒前
12秒前
大气的念薇完成签到 ,获得积分10
12秒前
想自由完成签到,获得积分10
12秒前
14秒前
福娃完成签到,获得积分10
15秒前
陶醉钻石发布了新的文献求助10
15秒前
麻麻珍妮斯完成签到,获得积分10
15秒前
碗千岁发布了新的文献求助10
16秒前
eejance完成签到,获得积分20
17秒前
hzxy_lyt应助yu采纳,获得10
19秒前
江小白发布了新的文献求助10
23秒前
111123123123发布了新的文献求助10
24秒前
马户的崛起完成签到,获得积分10
26秒前
27秒前
乐乐应助boo采纳,获得10
28秒前
30秒前
小二郎应助年轻的无极采纳,获得10
30秒前
sjj完成签到,获得积分10
30秒前
乐乐应助hexinyu采纳,获得20
30秒前
最牛的菠萝隐士完成签到,获得积分10
31秒前
一只橘子完成签到 ,获得积分10
31秒前
eejance发布了新的文献求助30
32秒前
沈吃吃发布了新的文献求助10
33秒前
34秒前
34秒前
科研通AI2S应助张文文采纳,获得10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358519
求助须知:如何正确求助?哪些是违规求助? 2981683
关于积分的说明 8700144
捐赠科研通 2663263
什么是DOI,文献DOI怎么找? 1458365
科研通“疑难数据库(出版商)”最低求助积分说明 675112
邀请新用户注册赠送积分活动 666149