Dual Consensus Anchor Learning for Fast Multi-View Clustering

聚类分析 计算机科学 对偶(语法数字) 人工智能 文学类 艺术
作者
Yalan Qin,Chuan Qin,Xinpeng Zhang,Guorui Feng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5298-5311 被引量:22
标识
DOI:10.1109/tip.2024.3459651
摘要

Multi-view clustering usually attempts to improve the final performance by integrating graph structure information from different views and methods based on anchor are presented to reduce the computation cost for datasets with large scales. Despite significant progress, these methods pay few attentions to ensuring that the cluster structure correspondence between anchor graph and partition is built on multi-view datasets. Besides, they ignore to discover the anchor graph depicting the shared cluster assignment across views under the orthogonal constraint on actual bases in factorization. In this paper, we propose a novel Dual consensus Anchor Learning for Fast multi-view clustering (DALF) method, where the cluster structure correspondence between anchor graph and partition is guaranteed on multi-view datasets with large scales. It jointly learns anchors, constructs anchor graph and performs partition under a unified framework with the rank constraint imposed on the built Laplacian graph and the orthogonal constraint on the centroid representation. DALF simultaneously focuses on the cluster structure in the anchor graph and partition. The final cluster structure is simultaneously shown in the anchor graph and partition. We introduce the orthogonal constraint on the centroid representation in anchor graph factorization and the cluster assignment is directly constructed, where the cluster structure is shown in the partition. We present an iterative algorithm for solving the formulated problem. Extensive experiments demonstrate the effectiveness and efficiency of DALF on different multi-view datasets compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗伯特骚塞完成签到,获得积分10
刚刚
Mic驳回了打打应助
1秒前
1秒前
1秒前
2秒前
华仔应助zp6666tql采纳,获得10
2秒前
2秒前
龙海完成签到 ,获得积分10
3秒前
佟佳Red发布了新的文献求助10
3秒前
赚钱的君发布了新的文献求助10
3秒前
一丁点可爱完成签到,获得积分10
3秒前
4秒前
4秒前
九三发布了新的文献求助10
4秒前
七木发布了新的文献求助10
5秒前
5秒前
xiaoju发布了新的文献求助10
5秒前
小小发布了新的文献求助10
5秒前
皮皮琪完成签到,获得积分10
5秒前
Sunny完成签到,获得积分10
6秒前
小小明天完成签到,获得积分10
6秒前
Zinc发布了新的文献求助10
6秒前
yy完成签到,获得积分10
6秒前
fahbfafajk完成签到,获得积分10
7秒前
lavande发布了新的文献求助10
8秒前
8秒前
cenghao发布了新的文献求助10
9秒前
俊秀的傲松完成签到,获得积分10
9秒前
科研修沟完成签到 ,获得积分10
11秒前
彭于晏应助七木采纳,获得10
11秒前
斯文败类应助Zinc采纳,获得10
12秒前
12秒前
remax发布了新的文献求助10
12秒前
张婷发布了新的文献求助10
13秒前
14秒前
万能图书馆应助xiaoju采纳,获得10
15秒前
YY发布了新的文献求助20
15秒前
Zinc完成签到,获得积分10
18秒前
19秒前
科目三应助小鑫爱科研采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524661
求助须知:如何正确求助?哪些是违规求助? 4615154
关于积分的说明 14546595
捐赠科研通 4553141
什么是DOI,文献DOI怎么找? 2495163
邀请新用户注册赠送积分活动 1475760
关于科研通互助平台的介绍 1447541