Dual Consensus Anchor Learning for Fast Multi-View Clustering

聚类分析 计算机科学 对偶(语法数字) 人工智能 文学类 艺术
作者
Yalan Qin,Chuan Qin,Xinpeng Zhang,Guorui Feng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5298-5311 被引量:22
标识
DOI:10.1109/tip.2024.3459651
摘要

Multi-view clustering usually attempts to improve the final performance by integrating graph structure information from different views and methods based on anchor are presented to reduce the computation cost for datasets with large scales. Despite significant progress, these methods pay few attentions to ensuring that the cluster structure correspondence between anchor graph and partition is built on multi-view datasets. Besides, they ignore to discover the anchor graph depicting the shared cluster assignment across views under the orthogonal constraint on actual bases in factorization. In this paper, we propose a novel Dual consensus Anchor Learning for Fast multi-view clustering (DALF) method, where the cluster structure correspondence between anchor graph and partition is guaranteed on multi-view datasets with large scales. It jointly learns anchors, constructs anchor graph and performs partition under a unified framework with the rank constraint imposed on the built Laplacian graph and the orthogonal constraint on the centroid representation. DALF simultaneously focuses on the cluster structure in the anchor graph and partition. The final cluster structure is simultaneously shown in the anchor graph and partition. We introduce the orthogonal constraint on the centroid representation in anchor graph factorization and the cluster assignment is directly constructed, where the cluster structure is shown in the partition. We present an iterative algorithm for solving the formulated problem. Extensive experiments demonstrate the effectiveness and efficiency of DALF on different multi-view datasets compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助111111采纳,获得10
刚刚
1秒前
2秒前
2秒前
王东旭完成签到,获得积分10
2秒前
xiaozhang发布了新的文献求助10
2秒前
3秒前
乐乐应助橘寄采纳,获得10
3秒前
3秒前
酷酷完成签到,获得积分10
3秒前
孙成完成签到,获得积分10
3秒前
ljh发布了新的文献求助10
3秒前
3秒前
呐呐呐完成签到 ,获得积分10
3秒前
starry发布了新的文献求助10
4秒前
研友_Z1xNWn完成签到,获得积分10
4秒前
weilucking完成签到,获得积分10
5秒前
5秒前
理躺丁真发布了新的文献求助10
6秒前
6秒前
6秒前
小马甲应助呵tui采纳,获得10
6秒前
一路狂奔等不了完成签到 ,获得积分10
6秒前
miao发布了新的文献求助10
6秒前
自由的新波完成签到,获得积分10
6秒前
ceeray23应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
大模型应助ttssooe采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
啦啦啦123完成签到,获得积分10
6秒前
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
nuoran完成签到,获得积分10
6秒前
苏silence发布了新的文献求助10
7秒前
7秒前
YY发布了新的文献求助10
8秒前
8秒前
隐形fh完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017