已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dual Consensus Anchor Learning for Fast Multi-View Clustering

聚类分析 计算机科学 对偶(语法数字) 人工智能 文学类 艺术
作者
Yalan Qin,Chuan Qin,Xinpeng Zhang,Guorui Feng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5298-5311 被引量:22
标识
DOI:10.1109/tip.2024.3459651
摘要

Multi-view clustering usually attempts to improve the final performance by integrating graph structure information from different views and methods based on anchor are presented to reduce the computation cost for datasets with large scales. Despite significant progress, these methods pay few attentions to ensuring that the cluster structure correspondence between anchor graph and partition is built on multi-view datasets. Besides, they ignore to discover the anchor graph depicting the shared cluster assignment across views under the orthogonal constraint on actual bases in factorization. In this paper, we propose a novel Dual consensus Anchor Learning for Fast multi-view clustering (DALF) method, where the cluster structure correspondence between anchor graph and partition is guaranteed on multi-view datasets with large scales. It jointly learns anchors, constructs anchor graph and performs partition under a unified framework with the rank constraint imposed on the built Laplacian graph and the orthogonal constraint on the centroid representation. DALF simultaneously focuses on the cluster structure in the anchor graph and partition. The final cluster structure is simultaneously shown in the anchor graph and partition. We introduce the orthogonal constraint on the centroid representation in anchor graph factorization and the cluster assignment is directly constructed, where the cluster structure is shown in the partition. We present an iterative algorithm for solving the formulated problem. Extensive experiments demonstrate the effectiveness and efficiency of DALF on different multi-view datasets compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Colo完成签到,获得积分10
3秒前
qsq完成签到 ,获得积分10
5秒前
5秒前
6秒前
9秒前
天天快乐应助浮光采纳,获得10
9秒前
ding应助panyi采纳,获得10
10秒前
12秒前
13秒前
joan完成签到,获得积分10
14秒前
14秒前
传奇3应助Tracy采纳,获得10
15秒前
薛变霞发布了新的文献求助10
15秒前
幸运幸福完成签到,获得积分10
16秒前
yuanyuan发布了新的文献求助10
16秒前
优雅完成签到,获得积分10
17秒前
斯文怀寒完成签到 ,获得积分20
17秒前
17秒前
善学以致用应助想想采纳,获得10
18秒前
端庄的飞阳完成签到 ,获得积分10
18秒前
orixero应助健忘海露采纳,获得10
19秒前
清风如月发布了新的文献求助10
19秒前
qiandi完成签到 ,获得积分10
20秒前
22秒前
无限白羊发布了新的文献求助10
23秒前
24秒前
yuanyuan完成签到,获得积分10
25秒前
27秒前
大模型应助复方蛋酥卷采纳,获得20
28秒前
28秒前
29秒前
英姑应助留胡子的大树采纳,获得10
30秒前
十六夜彦完成签到,获得积分10
30秒前
浮光发布了新的文献求助10
31秒前
菠萝完成签到 ,获得积分0
32秒前
33秒前
35秒前
LA发布了新的文献求助20
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488170
求助须知:如何正确求助?哪些是违规求助? 4587174
关于积分的说明 14412856
捐赠科研通 4518407
什么是DOI,文献DOI怎么找? 2475741
邀请新用户注册赠送积分活动 1461367
关于科研通互助平台的介绍 1434263