Dual Consensus Anchor Learning for Fast Multi-view Clustering

聚类分析 计算机科学 对偶(语法数字) 人工智能 文学类 艺术
作者
Yalan Qin,Chuan Qin,Xinpeng Zhang,Guorui Feng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3459651
摘要

Multi-view clustering usually attempts to improve the final performance by integrating graph structure information from different views and methods based on anchor are presented to reduce the computation cost for datasets with large scales. Despite significant progress, these methods pay few attentions to ensuring that the cluster structure correspondence between anchor graph and partition is built on multi-view datasets. Besides, they ignore to discover the anchor graph depicting the shared cluster assignment across views under the orthogonal constraint on actual bases in factorization. In this paper, we propose a novel Dual consensus Anchor Learning for Fast multi-view clustering (DALF) method, where the cluster structure correspondence between anchor graph and partition is guaranteed on multi-view datasets with large scales. It jointly learns anchors, constructs anchor graph and performs partition under a unified framework with the rank constraint imposed on the built Laplacian graph and the orthogonal constraint on the centroid representation. DALF simultaneously focuses on the cluster structure in the anchor graph and partition. The final cluster structure is simultaneously shown in the anchor graph and partition. We introduce the orthogonal constraint on the centroid representation in anchor graph factorization and the cluster assignment is directly constructed, where the cluster structure is shown in the partition. We present an iterative algorithm for solving the formulated problem. Extensive experiments demonstrate the effectiveness and efficiency of DALF on different multi-view datasets compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
领导范儿应助爱喝咖啡啦采纳,获得10
4秒前
SciGPT应助谨慎不二采纳,获得10
4秒前
安逸1发布了新的文献求助10
6秒前
蒋蒋完成签到,获得积分10
7秒前
大个应助鱼咬羊采纳,获得10
8秒前
11秒前
112233发布了新的文献求助10
12秒前
我是老大应助安逸1采纳,获得10
13秒前
蒋蒋发布了新的文献求助10
13秒前
16秒前
tough_cookie完成签到 ,获得积分10
20秒前
112233完成签到,获得积分10
23秒前
ngyy完成签到 ,获得积分10
25秒前
第二十篇完成签到,获得积分10
26秒前
爱喝咖啡啦完成签到,获得积分20
27秒前
27秒前
phyllis完成签到,获得积分10
28秒前
30秒前
种桃老总完成签到,获得积分10
30秒前
31秒前
安逸1发布了新的文献求助10
31秒前
汌舟完成签到,获得积分10
32秒前
救驾来迟完成签到,获得积分10
35秒前
薄荷蓝发布了新的文献求助10
35秒前
35秒前
35秒前
LL完成签到,获得积分10
36秒前
LL发布了新的文献求助10
38秒前
41秒前
43秒前
小杰完成签到,获得积分10
43秒前
小松鼠完成签到 ,获得积分10
43秒前
44秒前
45秒前
47秒前
楼北完成签到,获得积分10
47秒前
48秒前
CHENMILH完成签到,获得积分10
49秒前
51秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165504
求助须知:如何正确求助?哪些是违规求助? 2816567
关于积分的说明 7913125
捐赠科研通 2476098
什么是DOI,文献DOI怎么找? 1318668
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388