锑
材料科学
硒化物
薄膜
光电子学
薄膜太阳能电池
晶体生长
热的
Crystal(编程语言)
硒化铅
纳米技术
结晶学
冶金
化学
硒
计算机科学
物理
气象学
程序设计语言
作者
Yandi Luo,Hongli Ma,Nafees Ahmad,Usman Ali Shah,Zhuanghao Zheng,Shuo Chen,Zhenghua Su,Jun Zhao,Xianghua Zhang,Guangxing Liang
出处
期刊:Small
[Wiley]
日期:2024-10-25
标识
DOI:10.1002/smll.202403051
摘要
Abstract Antimony selenide (Sb 2 Se 3 ) has demonstrated considerable potential and advancement as a light‐absorbing material for thin‐film solar cells owing to its exceptional optoelectronic characteristics. However, challenges persist in the crystal growth, particularly regarding the nucleation mechanism during pre‐selenization process for Sb 2 Se 3 . The defects originating from this process significantly impact the quality of the absorber layer, leading to the degradation in the power conversion efficiency (PCE) of the device. Herein, the evolution of pre‐selenization using rapid thermal processing (RTP) on the crystallization quality of Sb 2 Se 3 film is systematically investigated. By optimizing the initial nucleation process during pre‐selenization, resulting in a reduction of grain boundaries and nucleation centers, the Sb 2 Se 3 thin films demonstrate enhanced crystallinity and pinholes‐free morphology. It is found that the improved quality of the grain interior and interfaces of the Sb 2 Se 3 absorber can mitigate intrinsic defects within the bulk layer, and passivate interfacial defect recombination. As a result, the short circuit current density ( J SC ) is elevated to 28.97 mA cm −2 , and a competitive efficiency of 9.03% is achieved in Sb 2 Se 3 device. This study provides comprehensive insight into the process of crystal growth and the mechanism for defect suppression, which holds guiding significance for advancing photovoltaic performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI