化学
镁
水溶液
电解质
无机化学
阳极
氢
有机化学
物理化学
电极
作者
Florian Deißenbeck,Sudarsan Surendralal,Mira Todorova,Stefan Wippermann,Jörg Neugebauer
摘要
Aqueous metal corrosion is a major economic concern in modern society. A phenomenon that has puzzled generations of scientists in this field is the so-called anomalous hydrogen evolution: the violent dissolution of magnesium under electron-deficient (anodic) conditions, accompanied by strong hydrogen evolution and a key mechanism hampering Mg technology. Experimental studies have indicated the presence of univalent Mg+ in solution, but these findings have been largely ignored because they defy our common chemical understanding and evaded direct experimental observation. Using recent advances in the ab initio description of solid–liquid electrochemical interfaces under controlled potential conditions, we describe the full reaction path of Mg atom dissolution from a kinked Mg surface under anodic conditions. Our study reveals the formation of a solvated [Mg2+(OH)−]+ ion complex, challenging the conventional assumption of Mg2+ ion formation. This insight provides an intuitive explanation for the postulated presence of (Coulombically) univalent Mg+ ions, and the absence of protective oxide/hydroxide layers normally formed under anodic/oxidizing conditions. The discovery of this unexpected and unconventional reaction mechanism is crucial for identifying new strategies for corrosion prevention and can be transferred to other metals.
科研通智能强力驱动
Strongly Powered by AbleSci AI