Taming Two‐Dimensional Polymerization by a Machine‐Learning Discovered Crystallization Model

结晶 聚合 材料科学 计算机科学 化学工程 高分子科学 聚合物 工程类 复合材料
作者
Jiaxin Tian,Kiana A. Treaster,Liangtao Xiong,Zixiao Wang,Austin M. Evans,Haoyuan Li
出处
期刊:Angewandte Chemie [Wiley]
被引量:1
标识
DOI:10.1002/anie.202408937
摘要

Rapidly synthesizing high-quality two-dimensional covalent organic frameworks (2D COFs) is crucial for their practical applications. While strategies such as slow monomer addition have been developed based on an empirical understanding of their formation process, quantitative guidance remains absent, which prohibits precise optimizations of the experimental conditions. Here, we use a machine-learning approach that overcomes the challenges associated with bottom-up model derivation for the non-classical 2D COF crystallization processes. The resulting model, referred to as NEgen1, establishes correlations among the induction time, nucleation rate, growth rate, bond-forming rate constants, and common solution synthesis conditions for 2D COFs that grow by a nucleation-elongation mechanism. The results elucidate the detailed competition between the nucleation and growth dynamics in solution, which has been inappropriately described previously by classical, empirical models with assumptions invalid for 2D COF polymerization. By understanding the dynamic processes at play, the NEgen1 model reveals a simple strategy of gradually increasing monomer addition speed for growing large 2D COF crystals. This insight enables us to rapidly synthesize large COF-5 colloids, which could only be achieved previously by prolonged reaction times or by introducing chemical modulators. These results highlight the potential for systematically improving the crystal quality of 2D COFs, which has wide-reaching relevance for many of the applications where 2D COFs are speculated to be valuable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
奋斗的乘云完成签到 ,获得积分10
3秒前
脏脏鲤发布了新的文献求助10
3秒前
张岱帅z完成签到,获得积分10
6秒前
所所应助不学习的牛蛙采纳,获得10
8秒前
10秒前
10秒前
炙心发布了新的文献求助10
10秒前
10秒前
142857发布了新的文献求助10
12秒前
13秒前
李爱国应助云帆SaMa采纳,获得10
14秒前
阔达水之完成签到,获得积分10
15秒前
肖恩发布了新的文献求助10
16秒前
L同学发布了新的文献求助10
16秒前
17秒前
66完成签到,获得积分20
17秒前
xxmm完成签到 ,获得积分10
17秒前
喜悦剑通完成签到,获得积分10
17秒前
陶醉觅夏完成签到,获得积分10
18秒前
18秒前
时光如梭发布了新的文献求助10
18秒前
在水一方应助lirongcas采纳,获得10
18秒前
19秒前
142857完成签到,获得积分10
21秒前
充电宝应助sally采纳,获得10
21秒前
FashionBoy应助qzliyulin采纳,获得10
22秒前
王艾力发布了新的文献求助30
22秒前
22秒前
23秒前
66发布了新的文献求助10
23秒前
芜湖完成签到 ,获得积分10
25秒前
26秒前
云帆SaMa发布了新的文献求助10
27秒前
28秒前
852应助LIGHT采纳,获得10
29秒前
赘婿应助wen采纳,获得10
29秒前
JUDGEsir发布了新的文献求助10
29秒前
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229144
求助须知:如何正确求助?哪些是违规求助? 2876975
关于积分的说明 8197101
捐赠科研通 2544315
什么是DOI,文献DOI怎么找? 1374291
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621720