Artificial intelligence and machine learning in disorders of consciousness

人工智能 持续植物状态 最小意识状态 清醒 意识障碍 机器学习 意识 深度学习 心理干预 神经影像学 计算机科学 医学 脑电图 心理学 精神科 神经科学
作者
Minji Lee,Steven Laureys
出处
期刊:Current Opinion in Neurology [Lippincott Williams & Wilkins]
卷期号:37 (6): 614-620
标识
DOI:10.1097/wco.0000000000001322
摘要

Purpose of review As artificial intelligence and machine learning technologies continue to develop, they are being increasingly used to improve the scientific understanding and clinical care of patients with severe disorders of consciousness following acquired brain damage. We here review recent studies that utilized these techniques to reduce the diagnostic and prognostic uncertainty in disorders of consciousness, and to better characterize patients’ response to novel therapeutic interventions. Recent findings Most papers have focused on differentiating between unresponsive wakefulness syndrome and minimally conscious state, utilizing artificial intelligence to better analyze functional neuroimaging and electroencephalography data. They often proposed new features using conventional machine learning rather than deep learning algorithms. To better predict the outcome of patients with disorders of consciousness, recovery was most often based on the Glasgow Outcome Scale, and traditional machine learning techniques were used in most cases. Machine learning has also been employed to predict the effects of novel therapeutic interventions (e.g., zolpidem and transcranial direct current stimulation). Summary Artificial intelligence and machine learning can assist in clinical decision-making, including the diagnosis, prognosis, and therapy for patients with disorders of consciousness. The performance of these models can be expected to be significantly improved by the use of deep learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Suki采纳,获得10
2秒前
2秒前
瘦瘦心情完成签到,获得积分10
2秒前
MutantKitten发布了新的文献求助10
2秒前
彭于晏应助羽宇采纳,获得10
3秒前
彭于晏应助豆豆采纳,获得10
4秒前
大小姐发布了新的文献求助10
5秒前
明理宛秋完成签到 ,获得积分10
6秒前
动听怀莲发布了新的文献求助10
6秒前
张鱼丸子发布了新的文献求助10
6秒前
一个发布了新的文献求助10
6秒前
8秒前
汉堡包应助林懋采纳,获得10
8秒前
orixero应助研友_Z7Xdl8采纳,获得10
9秒前
9秒前
9秒前
10秒前
豆豆完成签到,获得积分10
11秒前
朝朝完成签到,获得积分10
12秒前
12秒前
上官若男应助一步一步采纳,获得10
12秒前
13秒前
超帅的傀斗完成签到,获得积分10
13秒前
梦旋发布了新的文献求助10
13秒前
华仔应助123456qi采纳,获得30
13秒前
14秒前
朝朝发布了新的文献求助10
15秒前
一个完成签到,获得积分10
15秒前
16秒前
17秒前
SAINT发布了新的文献求助150
18秒前
Doctorque完成签到,获得积分20
19秒前
19秒前
chenhui完成签到,获得积分10
20秒前
21秒前
zb完成签到,获得积分10
21秒前
活泼的飞鸟完成签到,获得积分0
23秒前
动听怀莲完成签到,获得积分10
25秒前
科研通AI5应助Suki采纳,获得10
25秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673993
求助须知:如何正确求助?哪些是违规求助? 3229404
关于积分的说明 9785706
捐赠科研通 2939973
什么是DOI,文献DOI怎么找? 1611552
邀请新用户注册赠送积分活动 760987
科研通“疑难数据库(出版商)”最低求助积分说明 736344