As an important biomarker, tumor cell-derived exosomes have substantial application prospects in early cancer screening and diagnosis. However, the unsatisfactory sensitivity and complicated sample pretreatment processes of conventional detection approaches have limited their use in clinical diagnosis. Nanopore sensors, as a highly sensitive, label-free, single-molecule technology, are widely utilized in molecule and bioparticle detection. Nevertheless, the exosome capture rate through nanopores is extremely low due to the low surface charge densities of exosomes and the effects of electrolyte concentration on their structural stability, thereby reducing the detection throughput. Here, we report an approach to improve the capture rate of exosome translocations using silicon nitride (SiN