Using machine learning to link climate, phylogeny and leaf area in eucalypts through a 50‐fold expansion of leaf trait datasets

特质 植物标本室 生物 系统发育树 分类单元 桉树 系统发育学 种内竞争 分类等级 生态学 机器学习 计算机科学 生物化学 基因 程序设计语言
作者
Karina Guo,William K. Cornwell,Jason G. Bragg
出处
期刊:Journal of Ecology [Wiley]
标识
DOI:10.1111/1365-2745.14354
摘要

Abstract Leaf area varies within and between species, and previous work has linked this variation to environment and evolutionary history. However, many previous studies fail to examine both these factors and often are data‐limited. To address this, our study developed a new workflow using machine learning to automate the extraction of leaf area from herbarium collections of Australian eucalypts ( Eucalyptus , Angophora and Corymbia ). This dataset included 136,599 measurements, expanding existing data on this taxon's leaf area by roughly 50‐fold. Our methods were validated using field standard metrics of accuracy, and comparisons to manual measurements both from the present study and existing datasets. With this dataset for the eucalypt clade, we observed positive relationships between leaf area and mean annual temperature and precipitation similar to those reported for the global flora. However, these relationships were not consistently observed within species, potentially due to gene flow suppressing local adaptation. When we examined these relationships at different phylogenetic levels, the slope of trait–climate associations within lineages converged towards the overall eucalypt slope at shallow phylogenetic scales (5–12 MY), suggesting that effects of gene flow relax just above the species level. The strengthening of trait–climate correlations at evolutionary scales just beyond the intraspecific level may represent a widespread phenomenon across various traits and taxa. Future studies can unveil these relationships with the larger sample sizes of new trait datasets generated through machine learning. Synthesis . Using machine learning, researchers are able to confirm current positive global relationships between leaf area and mean annual temperature and precipitation. Additionally, they were able to take this a step further and examine how it changes across time. Here they saw that at roughly 5–12 million years ago in the phylogenetic tree, the trait–climate slope begins to show significantly less variation. Overall, the study shows the potential of machine learning in ecology, with exciting new potential findings with its use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助dingdong采纳,获得10
1秒前
情怀应助dingdong采纳,获得10
1秒前
1秒前
安静发布了新的文献求助10
2秒前
丰知然应助清新的冷松采纳,获得10
2秒前
我是老大应助时尚语梦采纳,获得10
3秒前
3秒前
小余发布了新的文献求助10
3秒前
NexusExplorer应助见雨鱼采纳,获得10
3秒前
yigu完成签到 ,获得积分20
3秒前
ding应助starcatcher采纳,获得10
4秒前
Ll发布了新的文献求助10
4秒前
赘婿应助最最最采纳,获得10
4秒前
田様应助夜白采纳,获得20
5秒前
AaronW完成签到,获得积分10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
曦澄应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
期刊应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
prosperp应助科研通管家采纳,获得10
6秒前
6秒前
彭于晏应助易伊澤采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
晚安发布了新的文献求助50
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762