Using machine learning to link climate, phylogeny and leaf area in eucalypts through a 50‐fold expansion of leaf trait datasets

特质 植物标本室 生物 系统发育树 分类单元 桉树 系统发育学 种内竞争 分类等级 生态学 机器学习 计算机科学 生物化学 基因 程序设计语言
作者
Karina Guo,William K. Cornwell,Jason G. Bragg
出处
期刊:Journal of Ecology [Wiley]
标识
DOI:10.1111/1365-2745.14354
摘要

Abstract Leaf area varies within and between species, and previous work has linked this variation to environment and evolutionary history. However, many previous studies fail to examine both these factors and often are data‐limited. To address this, our study developed a new workflow using machine learning to automate the extraction of leaf area from herbarium collections of Australian eucalypts ( Eucalyptus , Angophora and Corymbia ). This dataset included 136,599 measurements, expanding existing data on this taxon's leaf area by roughly 50‐fold. Our methods were validated using field standard metrics of accuracy, and comparisons to manual measurements both from the present study and existing datasets. With this dataset for the eucalypt clade, we observed positive relationships between leaf area and mean annual temperature and precipitation similar to those reported for the global flora. However, these relationships were not consistently observed within species, potentially due to gene flow suppressing local adaptation. When we examined these relationships at different phylogenetic levels, the slope of trait–climate associations within lineages converged towards the overall eucalypt slope at shallow phylogenetic scales (5–12 MY), suggesting that effects of gene flow relax just above the species level. The strengthening of trait–climate correlations at evolutionary scales just beyond the intraspecific level may represent a widespread phenomenon across various traits and taxa. Future studies can unveil these relationships with the larger sample sizes of new trait datasets generated through machine learning. Synthesis . Using machine learning, researchers are able to confirm current positive global relationships between leaf area and mean annual temperature and precipitation. Additionally, they were able to take this a step further and examine how it changes across time. Here they saw that at roughly 5–12 million years ago in the phylogenetic tree, the trait–climate slope begins to show significantly less variation. Overall, the study shows the potential of machine learning in ecology, with exciting new potential findings with its use.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liffchao发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
卜青完成签到,获得积分10
2秒前
2秒前
xs发布了新的文献求助10
2秒前
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
QDU应助科研通管家采纳,获得20
2秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
Jared应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
Jared应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
Jared应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
Jared应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得30
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
万墨某完成签到,获得积分10
4秒前
Jared应助科研通管家采纳,获得10
4秒前
4秒前
笨笨亦巧发布了新的文献求助10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
spc68应助seashell采纳,获得10
4秒前
4秒前
火鸟发布了新的文献求助10
4秒前
4秒前
baimafeima发布了新的文献求助10
6秒前
7秒前
兰海凤完成签到,获得积分10
7秒前
aaaaa完成签到 ,获得积分10
7秒前
晚心完成签到,获得积分10
8秒前
hymmm发布了新的文献求助10
8秒前
sakura完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756