Using machine learning to link climate, phylogeny and leaf area in eucalypts through a 50‐fold expansion of leaf trait datasets

特质 植物标本室 生物 系统发育树 分类单元 桉树 系统发育学 种内竞争 分类等级 生态学 机器学习 计算机科学 生物化学 基因 程序设计语言
作者
Karina Guo,William K. Cornwell,Jason G. Bragg
出处
期刊:Journal of Ecology [Wiley]
标识
DOI:10.1111/1365-2745.14354
摘要

Abstract Leaf area varies within and between species, and previous work has linked this variation to environment and evolutionary history. However, many previous studies fail to examine both these factors and often are data‐limited. To address this, our study developed a new workflow using machine learning to automate the extraction of leaf area from herbarium collections of Australian eucalypts ( Eucalyptus , Angophora and Corymbia ). This dataset included 136,599 measurements, expanding existing data on this taxon's leaf area by roughly 50‐fold. Our methods were validated using field standard metrics of accuracy, and comparisons to manual measurements both from the present study and existing datasets. With this dataset for the eucalypt clade, we observed positive relationships between leaf area and mean annual temperature and precipitation similar to those reported for the global flora. However, these relationships were not consistently observed within species, potentially due to gene flow suppressing local adaptation. When we examined these relationships at different phylogenetic levels, the slope of trait–climate associations within lineages converged towards the overall eucalypt slope at shallow phylogenetic scales (5–12 MY), suggesting that effects of gene flow relax just above the species level. The strengthening of trait–climate correlations at evolutionary scales just beyond the intraspecific level may represent a widespread phenomenon across various traits and taxa. Future studies can unveil these relationships with the larger sample sizes of new trait datasets generated through machine learning. Synthesis . Using machine learning, researchers are able to confirm current positive global relationships between leaf area and mean annual temperature and precipitation. Additionally, they were able to take this a step further and examine how it changes across time. Here they saw that at roughly 5–12 million years ago in the phylogenetic tree, the trait–climate slope begins to show significantly less variation. Overall, the study shows the potential of machine learning in ecology, with exciting new potential findings with its use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玥越发布了新的文献求助10
刚刚
优秀的离子键完成签到 ,获得积分10
刚刚
刚刚
科研通AI6应助嬴炎采纳,获得10
1秒前
上官若男应助qq158014169采纳,获得10
1秒前
1秒前
1秒前
jiaman1031完成签到,获得积分20
1秒前
冷静的毛豆完成签到,获得积分10
2秒前
3242晶完成签到,获得积分10
3秒前
3秒前
3秒前
面条发布了新的文献求助10
3秒前
希望天下0贩的0应助lin采纳,获得10
4秒前
dockercompose99完成签到,获得积分10
4秒前
4秒前
lxt完成签到,获得积分10
5秒前
5秒前
zdl发布了新的文献求助10
5秒前
will287248100发布了新的文献求助10
6秒前
6秒前
6秒前
异梦完成签到,获得积分10
6秒前
科研通AI2S应助SG采纳,获得30
7秒前
许子健发布了新的文献求助10
7秒前
8秒前
科研通AI6应助boli采纳,获得10
8秒前
默默的西木完成签到 ,获得积分10
8秒前
古朵发布了新的文献求助10
8秒前
8秒前
科研通AI6应助777采纳,获得10
8秒前
8秒前
ztayx完成签到 ,获得积分10
8秒前
狂野静曼发布了新的文献求助10
9秒前
yiyi完成签到,获得积分10
9秒前
ChloeF发布了新的文献求助10
9秒前
Dr_JennyZ应助mjsdx采纳,获得30
9秒前
Cjiayi完成签到,获得积分10
9秒前
胡图图完成签到,获得积分10
9秒前
lcdamoy完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329293
求助须知:如何正确求助?哪些是违规求助? 4468822
关于积分的说明 13906962
捐赠科研通 4361865
什么是DOI,文献DOI怎么找? 2396049
邀请新用户注册赠送积分活动 1389427
关于科研通互助平台的介绍 1360272