亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using machine learning to link climate, phylogeny and leaf area in eucalypts through a 50‐fold expansion of leaf trait datasets

特质 植物标本室 生物 系统发育树 分类单元 桉树 系统发育学 种内竞争 分类等级 生态学 机器学习 计算机科学 生物化学 基因 程序设计语言
作者
Karina Guo,William K. Cornwell,Jason G. Bragg
出处
期刊:Journal of Ecology [Wiley]
标识
DOI:10.1111/1365-2745.14354
摘要

Abstract Leaf area varies within and between species, and previous work has linked this variation to environment and evolutionary history. However, many previous studies fail to examine both these factors and often are data‐limited. To address this, our study developed a new workflow using machine learning to automate the extraction of leaf area from herbarium collections of Australian eucalypts ( Eucalyptus , Angophora and Corymbia ). This dataset included 136,599 measurements, expanding existing data on this taxon's leaf area by roughly 50‐fold. Our methods were validated using field standard metrics of accuracy, and comparisons to manual measurements both from the present study and existing datasets. With this dataset for the eucalypt clade, we observed positive relationships between leaf area and mean annual temperature and precipitation similar to those reported for the global flora. However, these relationships were not consistently observed within species, potentially due to gene flow suppressing local adaptation. When we examined these relationships at different phylogenetic levels, the slope of trait–climate associations within lineages converged towards the overall eucalypt slope at shallow phylogenetic scales (5–12 MY), suggesting that effects of gene flow relax just above the species level. The strengthening of trait–climate correlations at evolutionary scales just beyond the intraspecific level may represent a widespread phenomenon across various traits and taxa. Future studies can unveil these relationships with the larger sample sizes of new trait datasets generated through machine learning. Synthesis . Using machine learning, researchers are able to confirm current positive global relationships between leaf area and mean annual temperature and precipitation. Additionally, they were able to take this a step further and examine how it changes across time. Here they saw that at roughly 5–12 million years ago in the phylogenetic tree, the trait–climate slope begins to show significantly less variation. Overall, the study shows the potential of machine learning in ecology, with exciting new potential findings with its use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加菲丰丰应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
医学生完成签到 ,获得积分10
29秒前
NexusExplorer应助文艺的寻芹采纳,获得10
49秒前
57秒前
等待蚂蚁发布了新的文献求助10
1分钟前
1分钟前
开心每一天完成签到 ,获得积分10
2分钟前
碳土不凡完成签到 ,获得积分10
2分钟前
2分钟前
FashionBoy应助小小娜采纳,获得10
2分钟前
3分钟前
小小娜发布了新的文献求助10
3分钟前
小小娜完成签到,获得积分10
3分钟前
科研通AI5应助002采纳,获得10
3分钟前
3分钟前
002发布了新的文献求助10
3分钟前
3分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得30
4分钟前
4分钟前
哈哈发布了新的文献求助10
4分钟前
何何发布了新的文献求助10
4分钟前
CipherSage应助哈哈采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
飞快的孱发布了新的文献求助10
4分钟前
4分钟前
Nicole完成签到,获得积分20
4分钟前
Nicole发布了新的文献求助10
4分钟前
花陵完成签到 ,获得积分10
5分钟前
胖胖猪发布了新的文献求助10
5分钟前
5分钟前
飞快的孱发布了新的文献求助10
5分钟前
6分钟前
小二郎应助幽默安珊采纳,获得10
6分钟前
无名发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626119
求助须知:如何正确求助?哪些是违规求助? 4025136
关于积分的说明 12458423
捐赠科研通 3710373
什么是DOI,文献DOI怎么找? 2046578
邀请新用户注册赠送积分活动 1078526
科研通“疑难数据库(出版商)”最低求助积分说明 960987