亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using machine learning to link climate, phylogeny and leaf area in eucalypts through a 50‐fold expansion of leaf trait datasets

特质 植物标本室 生物 系统发育树 分类单元 桉树 系统发育学 种内竞争 分类等级 生态学 机器学习 计算机科学 生物化学 基因 程序设计语言
作者
Karina Guo,William K. Cornwell,Jason G. Bragg
出处
期刊:Journal of Ecology [Wiley]
标识
DOI:10.1111/1365-2745.14354
摘要

Abstract Leaf area varies within and between species, and previous work has linked this variation to environment and evolutionary history. However, many previous studies fail to examine both these factors and often are data‐limited. To address this, our study developed a new workflow using machine learning to automate the extraction of leaf area from herbarium collections of Australian eucalypts ( Eucalyptus , Angophora and Corymbia ). This dataset included 136,599 measurements, expanding existing data on this taxon's leaf area by roughly 50‐fold. Our methods were validated using field standard metrics of accuracy, and comparisons to manual measurements both from the present study and existing datasets. With this dataset for the eucalypt clade, we observed positive relationships between leaf area and mean annual temperature and precipitation similar to those reported for the global flora. However, these relationships were not consistently observed within species, potentially due to gene flow suppressing local adaptation. When we examined these relationships at different phylogenetic levels, the slope of trait–climate associations within lineages converged towards the overall eucalypt slope at shallow phylogenetic scales (5–12 MY), suggesting that effects of gene flow relax just above the species level. The strengthening of trait–climate correlations at evolutionary scales just beyond the intraspecific level may represent a widespread phenomenon across various traits and taxa. Future studies can unveil these relationships with the larger sample sizes of new trait datasets generated through machine learning. Synthesis . Using machine learning, researchers are able to confirm current positive global relationships between leaf area and mean annual temperature and precipitation. Additionally, they were able to take this a step further and examine how it changes across time. Here they saw that at roughly 5–12 million years ago in the phylogenetic tree, the trait–climate slope begins to show significantly less variation. Overall, the study shows the potential of machine learning in ecology, with exciting new potential findings with its use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
慕青应助青儿采纳,获得10
12秒前
17秒前
jinyy发布了新的文献求助10
19秒前
Anna Jenna发布了新的文献求助10
23秒前
24秒前
34秒前
jinyy完成签到,获得积分20
35秒前
Anna Jenna完成签到,获得积分10
36秒前
青儿发布了新的文献求助10
39秒前
希望天下0贩的0应助jinyy采纳,获得10
40秒前
程克勤完成签到 ,获得积分10
41秒前
42秒前
46秒前
青儿完成签到,获得积分10
47秒前
huanglu发布了新的文献求助10
51秒前
非洲大象发布了新的文献求助100
56秒前
饱满跳跳糖完成签到,获得积分10
1分钟前
李健应助去去去去采纳,获得10
1分钟前
1分钟前
SciGPT应助dd采纳,获得10
1分钟前
喝可乐的萝卜兔完成签到 ,获得积分10
1分钟前
隐形问萍发布了新的文献求助10
1分钟前
FashionBoy应助fang采纳,获得10
1分钟前
熊仔仔熊完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
hesurina完成签到,获得积分10
2分钟前
2分钟前
粥粥舟发布了新的文献求助10
2分钟前
大模型应助优雅的涵瑶采纳,获得10
2分钟前
2分钟前
粥粥舟完成签到,获得积分10
2分钟前
科研剧中人完成签到,获得积分0
2分钟前
2分钟前
3分钟前
春曙为最发布了新的文献求助20
3分钟前
vg完成签到 ,获得积分10
3分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142672
求助须知:如何正确求助?哪些是违规求助? 2793553
关于积分的说明 7806860
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303455
科研通“疑难数据库(出版商)”最低求助积分说明 626950
版权声明 601314