Research on Site Selection Planning of Urban Parks Based on POI and Machine Learning—Taking Guangzhou City as an Example

选址 选择(遗传算法) 环境规划 城市规划 地理 计算机科学 机器学习 工程类 土木工程 政治学 法学
作者
Xiaoxiang Tang,Cheng Zou,Chang Shu,Mengqing Zhang,Huicheng Feng
出处
期刊:Land [MDPI AG]
卷期号:13 (9): 1362-1362
标识
DOI:10.3390/land13091362
摘要

Against the background of smart city construction and the increasing application of big data in the field of planning, a method is proposed to effectively improve the objectivity, scientificity, and global nature of urban park siting, taking Guangzhou and its current urban park layout as an example. The proposed approach entails integrating POI data and innovatively applying machine learning algorithms to construct a decision tree model to make predictions for urban park siting. The results show that (1) the current layout of urban parks in Guangzhou is significantly imbalanced and has blind zones, and with an expansion of the search radius, the distribution becomes more concentrated; high-density areas decrease from the center outward in a circle, which manifests as a pattern of high aggregation at the core and low dispersion at the edge. (2) Urban park areas with a service pressure of level 3 have the largest coverage and should be prioritized for construction as much as possible; there are fewer areas at levels 4 and 5, which are mainly concentrated in the central city, and unreasonable resource allocation is a problem that needs to be solved urgently. (3) There was a preliminary prediction of 6825 sites suitable for planning, and the fit with existing city parks was 93.7%. The prediction results were reasonable, and the method was feasible. After further screening through the coupling and superposition of the service pressure and the layout status quo, 1537 locations for priority planning were finally obtained. (4) Using the ID3 machine learning algorithm to predict urban park sites is conducive to the development of an overall optimal layout, and subjectivity in site selection can be avoided, providing a methodological reference for the planning and construction of other infrastructure or the optimization of layouts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Allenzeng完成签到,获得积分10
1秒前
星辰大海应助秃头沙师弟采纳,获得10
1秒前
DJH完成签到,获得积分10
2秒前
海海完成签到,获得积分10
2秒前
科研通AI6应助韩jl采纳,获得10
3秒前
3秒前
4秒前
雪白丹亦完成签到,获得积分10
4秒前
4秒前
小菜鸡发布了新的文献求助30
4秒前
4秒前
远_09完成签到 ,获得积分10
4秒前
李雪松完成签到 ,获得积分10
5秒前
丘比特应助孝顺的白薇采纳,获得10
5秒前
云一完成签到,获得积分10
5秒前
hersy完成签到,获得积分10
5秒前
5秒前
Nil完成签到,获得积分10
6秒前
miao发布了新的文献求助10
6秒前
6秒前
虫虫们发布了新的文献求助20
6秒前
三笠完成签到,获得积分10
6秒前
zzz完成签到,获得积分10
6秒前
romio完成签到,获得积分10
7秒前
明亮的青旋完成签到 ,获得积分10
7秒前
刘倩完成签到,获得积分10
7秒前
肖战战完成签到 ,获得积分10
7秒前
fouli完成签到,获得积分10
7秒前
Bressanone完成签到,获得积分10
7秒前
8秒前
世间安得双全法完成签到,获得积分0
8秒前
大模型应助zhang采纳,获得10
8秒前
hao发布了新的文献求助10
8秒前
嘉博学长发布了新的文献求助10
8秒前
Yolen LI完成签到,获得积分0
8秒前
shinnosuke完成签到,获得积分10
8秒前
闪闪的鹏博完成签到,获得积分10
8秒前
三问白完成签到,获得积分10
9秒前
9秒前
MOOTEA完成签到,获得积分10
9秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388001
求助须知:如何正确求助?哪些是违规求助? 4509881
关于积分的说明 14033262
捐赠科研通 4420771
什么是DOI,文献DOI怎么找? 2428439
邀请新用户注册赠送积分活动 1421106
关于科研通互助平台的介绍 1400293