Research on Site Selection Planning of Urban Parks Based on POI and Machine Learning—Taking Guangzhou City as an Example

选址 选择(遗传算法) 环境规划 城市规划 地理 计算机科学 机器学习 工程类 土木工程 政治学 法学
作者
Xiaoxiang Tang,Cheng Zou,Chang Shu,Mengqing Zhang,Huicheng Feng
出处
期刊:Land [MDPI AG]
卷期号:13 (9): 1362-1362
标识
DOI:10.3390/land13091362
摘要

Against the background of smart city construction and the increasing application of big data in the field of planning, a method is proposed to effectively improve the objectivity, scientificity, and global nature of urban park siting, taking Guangzhou and its current urban park layout as an example. The proposed approach entails integrating POI data and innovatively applying machine learning algorithms to construct a decision tree model to make predictions for urban park siting. The results show that (1) the current layout of urban parks in Guangzhou is significantly imbalanced and has blind zones, and with an expansion of the search radius, the distribution becomes more concentrated; high-density areas decrease from the center outward in a circle, which manifests as a pattern of high aggregation at the core and low dispersion at the edge. (2) Urban park areas with a service pressure of level 3 have the largest coverage and should be prioritized for construction as much as possible; there are fewer areas at levels 4 and 5, which are mainly concentrated in the central city, and unreasonable resource allocation is a problem that needs to be solved urgently. (3) There was a preliminary prediction of 6825 sites suitable for planning, and the fit with existing city parks was 93.7%. The prediction results were reasonable, and the method was feasible. After further screening through the coupling and superposition of the service pressure and the layout status quo, 1537 locations for priority planning were finally obtained. (4) Using the ID3 machine learning algorithm to predict urban park sites is conducive to the development of an overall optimal layout, and subjectivity in site selection can be avoided, providing a methodological reference for the planning and construction of other infrastructure or the optimization of layouts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
flippeed完成签到,获得积分10
1秒前
臭宝大迷弟完成签到 ,获得积分10
2秒前
街上的纸屑完成签到 ,获得积分20
3秒前
4秒前
whl发布了新的文献求助30
4秒前
yellow完成签到,获得积分10
7秒前
8秒前
小二郎应助玥来玥好采纳,获得10
9秒前
10秒前
小蘑菇应助安然采纳,获得10
12秒前
12秒前
xtt1971发布了新的文献求助10
13秒前
XX完成签到,获得积分10
14秒前
勇敢永永发布了新的文献求助10
14秒前
123关注了科研通微信公众号
15秒前
小聂完成签到,获得积分10
15秒前
FashionBoy应助微笑天川采纳,获得10
15秒前
MoriZhang发布了新的文献求助10
16秒前
July完成签到,获得积分0
16秒前
16秒前
16秒前
科研通AI2S应助wenwen采纳,获得10
16秒前
YY完成签到,获得积分10
19秒前
小聂发布了新的文献求助10
19秒前
伊绵好完成签到,获得积分10
19秒前
姜逆舟发布了新的文献求助10
19秒前
19秒前
1+1应助去码头整点海鸥采纳,获得10
20秒前
jialing发布了新的文献求助10
21秒前
wanci应助copyj采纳,获得10
21秒前
hswhswqkdh发布了新的文献求助10
21秒前
22秒前
领导范儿应助chen采纳,获得10
22秒前
易东完成签到 ,获得积分10
22秒前
且慢完成签到,获得积分10
23秒前
xtt1971完成签到,获得积分20
23秒前
rrrrrrry发布了新的文献求助10
24秒前
24秒前
Hello应助QXS采纳,获得10
25秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207226
求助须知:如何正确求助?哪些是违规求助? 2856640
关于积分的说明 8106176
捐赠科研通 2521828
什么是DOI,文献DOI怎么找? 1355175
科研通“疑难数据库(出版商)”最低求助积分说明 642159
邀请新用户注册赠送积分活动 613419