Research on Site Selection Planning of Urban Parks Based on POI and Machine Learning—Taking Guangzhou City as an Example

选址 选择(遗传算法) 环境规划 城市规划 地理 计算机科学 机器学习 工程类 土木工程 政治学 法学
作者
Xiaoxiang Tang,Cheng Zou,Chang Shu,Mengqing Zhang,Huicheng Feng
出处
期刊:Land [Multidisciplinary Digital Publishing Institute]
卷期号:13 (9): 1362-1362
标识
DOI:10.3390/land13091362
摘要

Against the background of smart city construction and the increasing application of big data in the field of planning, a method is proposed to effectively improve the objectivity, scientificity, and global nature of urban park siting, taking Guangzhou and its current urban park layout as an example. The proposed approach entails integrating POI data and innovatively applying machine learning algorithms to construct a decision tree model to make predictions for urban park siting. The results show that (1) the current layout of urban parks in Guangzhou is significantly imbalanced and has blind zones, and with an expansion of the search radius, the distribution becomes more concentrated; high-density areas decrease from the center outward in a circle, which manifests as a pattern of high aggregation at the core and low dispersion at the edge. (2) Urban park areas with a service pressure of level 3 have the largest coverage and should be prioritized for construction as much as possible; there are fewer areas at levels 4 and 5, which are mainly concentrated in the central city, and unreasonable resource allocation is a problem that needs to be solved urgently. (3) There was a preliminary prediction of 6825 sites suitable for planning, and the fit with existing city parks was 93.7%. The prediction results were reasonable, and the method was feasible. After further screening through the coupling and superposition of the service pressure and the layout status quo, 1537 locations for priority planning were finally obtained. (4) Using the ID3 machine learning algorithm to predict urban park sites is conducive to the development of an overall optimal layout, and subjectivity in site selection can be avoided, providing a methodological reference for the planning and construction of other infrastructure or the optimization of layouts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛完成签到,获得积分10
2秒前
曾建完成签到 ,获得积分10
2秒前
黄宇航完成签到,获得积分10
2秒前
吃花蝴蝶吗完成签到,获得积分10
4秒前
小文殊完成签到 ,获得积分10
4秒前
归零者发布了新的文献求助10
5秒前
Hh完成签到,获得积分10
6秒前
7秒前
旺旺萃冰冰完成签到 ,获得积分10
8秒前
无心的星月完成签到 ,获得积分10
10秒前
善学以致用应助uil采纳,获得10
11秒前
liu发布了新的文献求助10
11秒前
水本无忧87完成签到,获得积分10
11秒前
鑫鑫完成签到,获得积分10
11秒前
爱在深秋完成签到,获得积分10
12秒前
13秒前
2275523154完成签到,获得积分10
15秒前
天天快乐应助归零者采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
huodian4发布了新的文献求助10
17秒前
kk完成签到,获得积分10
19秒前
赫连烙完成签到,获得积分10
21秒前
21秒前
22秒前
huodian4完成签到,获得积分10
22秒前
核桃nut完成签到,获得积分10
22秒前
犹豫的若男完成签到,获得积分10
23秒前
陶醉的又夏完成签到 ,获得积分10
24秒前
鹏飞九霄完成签到,获得积分10
25秒前
HH完成签到,获得积分10
25秒前
Snow完成签到 ,获得积分10
25秒前
777完成签到,获得积分10
26秒前
,。应助崔鑫采纳,获得20
26秒前
uil发布了新的文献求助10
26秒前
小二郎应助cc采纳,获得10
27秒前
量子星尘发布了新的文献求助10
29秒前
沙糖桔完成签到,获得积分10
34秒前
Dante完成签到,获得积分10
34秒前
无尘完成签到 ,获得积分10
34秒前
绝活中投完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044838
求助须知:如何正确求助?哪些是违规求助? 4274315
关于积分的说明 13323674
捐赠科研通 4088088
什么是DOI,文献DOI怎么找? 2236731
邀请新用户注册赠送积分活动 1244114
关于科研通互助平台的介绍 1172128