Research on Site Selection Planning of Urban Parks Based on POI and Machine Learning—Taking Guangzhou City as an Example

选址 选择(遗传算法) 环境规划 城市规划 地理 计算机科学 机器学习 工程类 土木工程 政治学 法学
作者
Xiaoxiang Tang,Cheng Zou,Chang Shu,Mengqing Zhang,Huicheng Feng
出处
期刊:Land [Multidisciplinary Digital Publishing Institute]
卷期号:13 (9): 1362-1362
标识
DOI:10.3390/land13091362
摘要

Against the background of smart city construction and the increasing application of big data in the field of planning, a method is proposed to effectively improve the objectivity, scientificity, and global nature of urban park siting, taking Guangzhou and its current urban park layout as an example. The proposed approach entails integrating POI data and innovatively applying machine learning algorithms to construct a decision tree model to make predictions for urban park siting. The results show that (1) the current layout of urban parks in Guangzhou is significantly imbalanced and has blind zones, and with an expansion of the search radius, the distribution becomes more concentrated; high-density areas decrease from the center outward in a circle, which manifests as a pattern of high aggregation at the core and low dispersion at the edge. (2) Urban park areas with a service pressure of level 3 have the largest coverage and should be prioritized for construction as much as possible; there are fewer areas at levels 4 and 5, which are mainly concentrated in the central city, and unreasonable resource allocation is a problem that needs to be solved urgently. (3) There was a preliminary prediction of 6825 sites suitable for planning, and the fit with existing city parks was 93.7%. The prediction results were reasonable, and the method was feasible. After further screening through the coupling and superposition of the service pressure and the layout status quo, 1537 locations for priority planning were finally obtained. (4) Using the ID3 machine learning algorithm to predict urban park sites is conducive to the development of an overall optimal layout, and subjectivity in site selection can be avoided, providing a methodological reference for the planning and construction of other infrastructure or the optimization of layouts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爆米花应助科研通管家采纳,获得100
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得20
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
3秒前
留胡子的紫槐完成签到,获得积分10
3秒前
3秒前
桐桐应助王子采纳,获得10
4秒前
淡淡的沅完成签到,获得积分10
4秒前
4秒前
英姑应助liars采纳,获得10
6秒前
6秒前
ccmaxp发布了新的文献求助10
7秒前
7秒前
Silence发布了新的文献求助10
7秒前
领导范儿应助予安采纳,获得10
8秒前
shann完成签到,获得积分10
9秒前
11秒前
11秒前
13秒前
Mingtiaoxiyue发布了新的文献求助30
13秒前
Npccc完成签到,获得积分10
13秒前
13秒前
开朗洋葱发布了新的文献求助10
13秒前
孙成成发布了新的文献求助10
16秒前
Carry发布了新的文献求助10
16秒前
Vincey完成签到,获得积分10
16秒前
王子发布了新的文献求助10
16秒前
圣西罗的饮水机完成签到,获得积分10
17秒前
敬老院N号应助zyw0532采纳,获得30
17秒前
17秒前
Silence完成签到,获得积分10
18秒前
纯真的诗兰完成签到,获得积分10
19秒前
从容的马喽完成签到,获得积分10
20秒前
小蘑菇应助beifa采纳,获得10
23秒前
24秒前
orixero应助阿笨巴比妥采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975610
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200337
捐赠科研通 3256337
什么是DOI,文献DOI怎么找? 1798246
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806357