发光
量子产额
荧光
电致发光
光致发光
激发态
共轭体系
光化学
材料科学
接受者
溶剂变色
分子
偶极子
化学
纳米技术
光电子学
聚合物
光学
有机化学
物理
图层(电子)
凝聚态物理
核物理学
复合材料
作者
Jingping Xiao,Denghui Liu,Yu Fu,Weijia Xie,Yingxiao Mu,Jia‐Xiong Chen,Zecong Ye,Shaomin Ji,Yanping Huo,Shi-Jian Su
标识
DOI:10.1002/anie.202415680
摘要
The π‐conjugated macrocyclic emitters with thermally activated delayed fluorescence (TADF) characteristics have attracted widespread attention in the field of organic electroluminescence (EL) materials due to their unique geometries and excellent luminescence performance. Despite the significant impact of conjugation length and cavity dimensions on molecular conformation, the influence of these factors on the excited‐state properties remains understudied. Herein, we formulated a strategy aimed at modulating the conformation of TADF macrocyclic molecules containing aniline as the donor (D) unit, and triazine as the acceptor (A), linked in D‐A and D‐π‐A alternative macrocyclic construction (MC‐TNT and MC‐TST). Corroborated by experimental and theoretical analyses, the compact and conformationally twisted MC‐TNT exhibits efficient blue luminescence in crystalline state, facilitating EL at high doping concentrations with maximum external quantum efficiency (EQEmax) of 13.9%, leading the field of blue macrocyclic emitters. Notably, MC‐TST with π‐bridge and flat conformation, demonstrates diminished Coulombic repulsion, achieving nearly 100% photoluminescence quantum yield and superior horizontal dipole orientation of 85% in 5 wt% doped films, and the corresponding device's EQEmax reaches record‐high 32.7% within the TADF macrocyclic domain.
科研通智能强力驱动
Strongly Powered by AbleSci AI