钝化
材料科学
锑
光致发光
载流子寿命
光电子学
载流子
纳米技术
硅
图层(电子)
冶金
作者
Yuqi Zhao,Wentao Xu,Jing Wen,Li Wang,Xueling Chen,Bo Che,Haolin Wang,Junbo Gong,Tao Chen,Xudong Xiao,Jianmin Li
标识
DOI:10.1002/adma.202410669
摘要
Abstract An effective defect passivation strategy is crucial for enhancing the performance of antimony selenosulfide (Sb 2 (S,Se) 3 ) solar cells, as it significantly influences charge transport and extraction efficiency. Herein, a convenient and novel in situ passivation (ISP) technique is successfully introduced to enhance the performance of Sb 2 (S,Se) 3 solar cells, achieving a champion efficiency of 10.81%, which is among the highest recorded for Sb 2 (S,Se) 3 solar cells to date. The first principles calculations and the experimental data reveal that incorporating sodium selenosulfate in the ISP strategy effectively functions as an in situ selenization, effectively passivating deep‐level cation antisite Sb Se defect within the Sb 2 (S,Se) 3 films and significantly suppressing non‐radiative recombination in the devices. Space‐charge‐limited current (SCLC), photoluminescence (PL), and transient absorption spectroscopy (TAS) measurements verify the high quality of the passivated films, showing fewer traps and defects. Moreover, the ISP strategy improved the overall quality of the Sb 2 (S,Se) 3 films, and fine‐tuned the energy levels, thereby facilitating enhanced carrier transport. This study thus provides a straightforward and effective method for passivating deep‐level defects in Sb 2 (S,Se) 3 solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI