Early prediction of intraoperative hypothermia in patients undergoing gynecological laparoscopic surgery: A retrospective cohort study

医学 置信区间 接收机工作特性 气腹 随机森林 回顾性队列研究 腹腔镜手术 外科 机器学习 腹腔镜检查 麻醉 内科学 计算机科学
作者
Ziyue Lu,Xiao Chen
出处
期刊:Medicine [Wolters Kluwer]
卷期号:103 (40): e39038-e39038
标识
DOI:10.1097/md.0000000000039038
摘要

Intraoperative hypothermia is one of the most common adverse events related to surgery, and clinical practice has been severely underestimated. In view of this, this study aims to build a practical intraoperative hypothermia prediction model for clinical decision-making assistance. We retrospectively collected clinical data of patients who underwent gynecological laparoscopic surgery from June 2018 to May 2023, and constructed a multimodal algorithm prediction model based on this data. For the construction of the prediction model, all data are randomly divided into a training queue (70%) and a testing queue (30%), and then 3 types of machine learning algorithms are used, namely: random forest, artificial neural network, and generalized linear regression. The effectiveness evaluation of all predictive models relies on the comprehensive evaluation of the net benefit method using the area under the receiver operating characteristic curve, calibration curve, and decision curve analysis. Finally, 1517 screened patients were filtered and 1429 participants were included for the construction of the predictive model. Among these, anesthesia time, pneumoperitoneum time, pneumoperitoneum flow rate, surgical time, intraoperative infusion, and room temperature were independent risk factors for intraoperative hypothermia and were listed as predictive variables. The random forest model algorithm combines 7 candidate variables to achieve optimal predictive performance in 2 queues, with an area under the curve of 0.893 and 0.887 and a 95% confidence interval of 0.835 to 0.951 and 0.829 to 0.945, respectively. The prediction efficiency of other prediction models is 0.783 and 0.821, with a 95% confidence interval of 0.725 to 0.841 and 0.763 to 0.879, respectively. The intraoperative hypothermia prediction model based on machine learning has satisfactory predictive performance, especially in random forests. This interpretable prediction model helps doctors evaluate the risk of intraoperative hypothermia, optimize clinical decision-making, and improve patient prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助nocap666采纳,获得10
刚刚
sdl发布了新的文献求助10
2秒前
香蕉觅云应助钵钵鸡采纳,获得10
2秒前
XY完成签到,获得积分10
3秒前
SZK应助周坚强采纳,获得20
4秒前
iNk应助蔡从安采纳,获得10
4秒前
有人应助蔡从安采纳,获得10
4秒前
Hello应助Jolleyhaha采纳,获得10
5秒前
猪兔关注了科研通微信公众号
5秒前
6秒前
6秒前
喵酱完成签到,获得积分10
6秒前
希望天下0贩的0应助Omni采纳,获得10
7秒前
8秒前
jiaozhiping完成签到,获得积分10
8秒前
XY发布了新的文献求助10
9秒前
zzcres完成签到,获得积分10
10秒前
Carrie完成签到,获得积分10
12秒前
情怀应助喵酱采纳,获得10
14秒前
14秒前
烂漫念柏发布了新的文献求助10
15秒前
15秒前
15秒前
怡然的尔曼完成签到,获得积分20
17秒前
17秒前
一团小煤球完成签到,获得积分10
17秒前
彭于晏应助nocap666采纳,获得10
18秒前
小蘑菇应助西猫采纳,获得10
18秒前
Jolleyhaha发布了新的文献求助10
19秒前
qianchen发布了新的文献求助10
19秒前
20秒前
21秒前
酸奶烤着吃应助三水鱼鱼采纳,获得10
22秒前
佳佳完成签到 ,获得积分10
22秒前
22秒前
24秒前
25秒前
26秒前
烂漫念柏完成签到,获得积分10
26秒前
敏感绫萱发布了新的文献求助10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730482
求助须知:如何正确求助?哪些是违规求助? 3275115
关于积分的说明 9991221
捐赠科研通 2990742
什么是DOI,文献DOI怎么找? 1641231
邀请新用户注册赠送积分活动 779622
科研通“疑难数据库(出版商)”最低求助积分说明 748331