CE-NC-VesselSegNet: Supervised by contrast-enhanced CT images but utilized to segment pulmonary vessels from non-contrast-enhanced CT images

对比度(视觉) 分割 相似性(几何) 计算机科学 人工智能 模式识别(心理学) 计算机视觉 图像(数学)
作者
Meihuan Wang,Shouliang Qi,Yanan Wu,Yu Sun,Runsheng Chang,Haowen Pang,Wei Qian
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:82: 104565-104565 被引量:4
标识
DOI:10.1016/j.bspc.2022.104565
摘要

The automatic segmentation of pulmonary vessels from CT images has important significance. However, accurately annotating pulmonary vessels directly in non-contrast CT (NCCT) images is complex and time-consuming. This study aims to draw annotations with contrast-enhanced CT (CECT) images and train a deep-learning model for segmenting pulmonary vessels from NCCT images. Two datasets with 63 CT scans were collected. Dataset D1 included 17 cases annotated in CECT images, 10 cases annotated in NCCT images, and 12 NCCT scans. Dataset D2 consisted of 12 CECT and 12 NCCT scans with annotations. First, annotations drawn in CECT images (Dataset D1) are transferred to NCCT images via spatial registration. Second, a CE-NC-VesselSegNet is proposed and trained using the transferred annotations to segment pulmonary vessels from NCCT images. Finally, the CE-NC-VesselSegNet is evaluated and compared with its counterparts. After registration, the maximum and root mean square error between CECT and NCCT images decreases, while the structural similarity and peak signal-to-noise ratio increase. CE-NC-VesselSegNet can accurately segment pulmonary vessels from NCCT images with a Dice of 0.856. In the external validation using Dataset D2, the CE-NC-VesselSegNet achieves a Dice of 0.738, which is higher compared with that of NC-VesselSegNet trained by D2. Visual inspections have shown that CE-NC-VesselSegNet enables more accurate and continuous segmentation compared with its counterpart. Annotations of pulmonary vessels drawn in CECT images can be transferred to NCCT images via spatial registration. Using these transferred annotations of high quality, a CE-NC-VesselSegNet can be trained to segment pulmonary vessels from NCCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助04号洁洁采纳,获得30
1秒前
1秒前
Jacquielin发布了新的文献求助10
2秒前
4秒前
乖猫要努力应助QWE采纳,获得10
5秒前
5秒前
7秒前
徐逊发布了新的文献求助10
8秒前
英俊的铭应助马克采纳,获得10
8秒前
9秒前
9秒前
糊了你的粥完成签到,获得积分10
10秒前
于情信芳完成签到 ,获得积分10
11秒前
乐乐应助罗永昊采纳,获得10
11秒前
七月完成签到,获得积分10
11秒前
11秒前
lab发布了新的文献求助10
13秒前
14秒前
yydsyyd完成签到 ,获得积分10
14秒前
ZZY发布了新的文献求助10
15秒前
科研通AI2S应助hhh采纳,获得10
15秒前
康康发布了新的文献求助10
15秒前
20秒前
20秒前
赘婿应助1号选手采纳,获得50
22秒前
木易完成签到,获得积分10
23秒前
23秒前
罗永昊发布了新的文献求助10
24秒前
leezhen完成签到,获得积分10
24秒前
24秒前
李健应助nini采纳,获得10
26秒前
shlw完成签到,获得积分10
28秒前
nimo发布了新的文献求助10
29秒前
29秒前
MXG完成签到,获得积分10
30秒前
ZZY完成签到,获得积分10
31秒前
32秒前
SYLH应助炒鸡小将采纳,获得10
33秒前
33秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959198
求助须知:如何正确求助?哪些是违规求助? 3505502
关于积分的说明 11124195
捐赠科研通 3237231
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824