CE-NC-VesselSegNet: Supervised by contrast-enhanced CT images but utilized to segment pulmonary vessels from non-contrast-enhanced CT images

对比度(视觉) 分割 相似性(几何) 计算机科学 人工智能 模式识别(心理学) 计算机视觉 图像(数学)
作者
Meihuan Wang,Shouliang Qi,Yanan Wu,Yu Sun,Runsheng Chang,Haowen Pang,Wei Qian
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:82: 104565-104565 被引量:10
标识
DOI:10.1016/j.bspc.2022.104565
摘要

The automatic segmentation of pulmonary vessels from CT images has important significance. However, accurately annotating pulmonary vessels directly in non-contrast CT (NCCT) images is complex and time-consuming. This study aims to draw annotations with contrast-enhanced CT (CECT) images and train a deep-learning model for segmenting pulmonary vessels from NCCT images. Two datasets with 63 CT scans were collected. Dataset D1 included 17 cases annotated in CECT images, 10 cases annotated in NCCT images, and 12 NCCT scans. Dataset D2 consisted of 12 CECT and 12 NCCT scans with annotations. First, annotations drawn in CECT images (Dataset D1) are transferred to NCCT images via spatial registration. Second, a CE-NC-VesselSegNet is proposed and trained using the transferred annotations to segment pulmonary vessels from NCCT images. Finally, the CE-NC-VesselSegNet is evaluated and compared with its counterparts. After registration, the maximum and root mean square error between CECT and NCCT images decreases, while the structural similarity and peak signal-to-noise ratio increase. CE-NC-VesselSegNet can accurately segment pulmonary vessels from NCCT images with a Dice of 0.856. In the external validation using Dataset D2, the CE-NC-VesselSegNet achieves a Dice of 0.738, which is higher compared with that of NC-VesselSegNet trained by D2. Visual inspections have shown that CE-NC-VesselSegNet enables more accurate and continuous segmentation compared with its counterpart. Annotations of pulmonary vessels drawn in CECT images can be transferred to NCCT images via spatial registration. Using these transferred annotations of high quality, a CE-NC-VesselSegNet can be trained to segment pulmonary vessels from NCCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zmy完成签到,获得积分10
刚刚
yan完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
6666发布了新的文献求助10
2秒前
Kka完成签到 ,获得积分10
2秒前
2秒前
Ashely完成签到,获得积分20
2秒前
浮游应助Khr1stINK采纳,获得10
3秒前
刘振坤完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
zgdzhj完成签到,获得积分10
4秒前
5秒前
tf发布了新的文献求助30
5秒前
DDD完成签到,获得积分10
5秒前
糊涂的孤丝完成签到,获得积分10
5秒前
6秒前
大力小丸子关注了科研通微信公众号
6秒前
陈品琪发布了新的文献求助10
6秒前
远方发布了新的文献求助10
6秒前
6秒前
xiaokaixin完成签到,获得积分10
7秒前
樱sky完成签到,获得积分10
8秒前
cmmm完成签到 ,获得积分10
8秒前
ZIYU完成签到,获得积分10
8秒前
mmmmmMM发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
香蕉觅云应助火柴two采纳,获得10
9秒前
zxx发布了新的文献求助10
9秒前
奶黄包应助刘鑫采纳,获得20
9秒前
hhh完成签到,获得积分10
9秒前
布兜兜完成签到,获得积分10
10秒前
10秒前
10秒前
白诺言发布了新的文献求助10
11秒前
星辰大海应助江江采纳,获得10
11秒前
11秒前
lololoan完成签到,获得积分10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444