CE-NC-VesselSegNet: Supervised by contrast-enhanced CT images but utilized to segment pulmonary vessels from non-contrast-enhanced CT images

对比度(视觉) 分割 相似性(几何) 计算机科学 人工智能 模式识别(心理学) 计算机视觉 图像(数学)
作者
Meihuan Wang,Shouliang Qi,Yanan Wu,Yu Sun,Runsheng Chang,Haowen Pang,Wei Qian
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:82: 104565-104565 被引量:4
标识
DOI:10.1016/j.bspc.2022.104565
摘要

The automatic segmentation of pulmonary vessels from CT images has important significance. However, accurately annotating pulmonary vessels directly in non-contrast CT (NCCT) images is complex and time-consuming. This study aims to draw annotations with contrast-enhanced CT (CECT) images and train a deep-learning model for segmenting pulmonary vessels from NCCT images. Two datasets with 63 CT scans were collected. Dataset D1 included 17 cases annotated in CECT images, 10 cases annotated in NCCT images, and 12 NCCT scans. Dataset D2 consisted of 12 CECT and 12 NCCT scans with annotations. First, annotations drawn in CECT images (Dataset D1) are transferred to NCCT images via spatial registration. Second, a CE-NC-VesselSegNet is proposed and trained using the transferred annotations to segment pulmonary vessels from NCCT images. Finally, the CE-NC-VesselSegNet is evaluated and compared with its counterparts. After registration, the maximum and root mean square error between CECT and NCCT images decreases, while the structural similarity and peak signal-to-noise ratio increase. CE-NC-VesselSegNet can accurately segment pulmonary vessels from NCCT images with a Dice of 0.856. In the external validation using Dataset D2, the CE-NC-VesselSegNet achieves a Dice of 0.738, which is higher compared with that of NC-VesselSegNet trained by D2. Visual inspections have shown that CE-NC-VesselSegNet enables more accurate and continuous segmentation compared with its counterpart. Annotations of pulmonary vessels drawn in CECT images can be transferred to NCCT images via spatial registration. Using these transferred annotations of high quality, a CE-NC-VesselSegNet can be trained to segment pulmonary vessels from NCCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助dandan采纳,获得10
1秒前
科研通AI5应助扣我头上采纳,获得10
1秒前
1秒前
1秒前
1秒前
Liolsy完成签到,获得积分10
1秒前
小京子发布了新的文献求助10
2秒前
上官若男应助雨碎寒江采纳,获得10
2秒前
zqh发布了新的文献求助10
2秒前
2秒前
皇甫契发布了新的文献求助10
3秒前
4秒前
天天快乐应助莹莹采纳,获得10
4秒前
菲菲发布了新的文献求助10
5秒前
8R60d8应助五星大厨小熊采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
无限如霜完成签到 ,获得积分10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
太子长琴发布了新的文献求助30
6秒前
Owen应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
李健应助欣慰汉堡采纳,获得10
6秒前
大卫发布了新的文献求助30
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490736
求助须知:如何正确求助?哪些是违规求助? 3077538
关于积分的说明 9149233
捐赠科研通 2769733
什么是DOI,文献DOI怎么找? 1519934
邀请新用户注册赠送积分活动 704390
科研通“疑难数据库(出版商)”最低求助积分说明 702148