SuHAN: Substructural hierarchical attention network for molecular representation

代表(政治) 计算机科学 下部结构 特征(语言学) 子网 人工智能 透视图(图形) 模式识别(心理学) 图层(电子) 财产(哲学) 数据挖掘 纳米技术 材料科学 哲学 法学 工程类 认识论 政治 结构工程 语言学 计算机安全 政治学
作者
Tao Ren,Haodong Zhang,Yang Shi,Ximeng Luo,Siqi Zhou
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier]
卷期号:119: 108401-108401
标识
DOI:10.1016/j.jmgm.2022.108401
摘要

Recently, molecular representation and property exploration, with the combination of neural network, play a critical role in the field of drug design and discovery for assisting in drug related research. However, previous research in molecular representation relies heavily on artificial extraction of features based on biological experiments which may result in a manually introduced noise of molecular information with high cost in time and money. In this paper, a novel method named Substructural Hierarchical Attention Network (SuHAN) is proposed to discover inherent characteristics of molecules for representation learning. Specifically, SuHAN is composed of the cascaded layer: atom-level layer and substructure-level layer. Molecule in the SMILES format is divided into several substructural fragments by predefined partition rules, and then they are fed into atom-level layer and substructure-level layer successively to obtain feature representation from different perspective: atomic view and substructural view. In this way, the prominent structural features that may be omitted in global extraction are excavated from a fine-grained viewpoint and fused to reconstruct representative pattern in an overall view. Experiments on biophysics and physiology datasets demonstrate that our model is competitive with a significant improvement of both accuracy and stability in performance. We confirmed that the substructural segments and progressive hierarchical networks lead to an effective molecular representation for downstream tasks. These results provide a novel perspective about reconstructing overall pattern through local prominent structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Mimi完成签到,获得积分10
刚刚
1秒前
王小狗发布了新的文献求助30
1秒前
SciGPT应助Hongmin采纳,获得10
2秒前
孙成成完成签到 ,获得积分10
2秒前
3秒前
minever白完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
6秒前
6秒前
归于晏发布了新的文献求助10
6秒前
6秒前
8秒前
8秒前
zhou_发布了新的文献求助10
9秒前
FashionBoy应助怕孤单的绿柏采纳,获得10
11秒前
Kyra12完成签到,获得积分10
11秒前
12秒前
cedricleonard发布了新的文献求助10
12秒前
脑洞疼应助武鹏佳采纳,获得10
13秒前
13秒前
13秒前
田様应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得20
14秒前
14秒前
14秒前
PLA完成签到,获得积分10
14秒前
852应助cedricleonard采纳,获得10
17秒前
18秒前
33完成签到,获得积分10
19秒前
20秒前
小吴完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328282
求助须知:如何正确求助?哪些是违规求助? 4468028
关于积分的说明 13903684
捐赠科研通 4360888
什么是DOI,文献DOI怎么找? 2395399
邀请新用户注册赠送积分活动 1388917
关于科研通互助平台的介绍 1359730