SuHAN: Substructural hierarchical attention network for molecular representation

代表(政治) 计算机科学 下部结构 特征(语言学) 子网 人工智能 透视图(图形) 模式识别(心理学) 图层(电子) 财产(哲学) 数据挖掘 纳米技术 材料科学 哲学 法学 工程类 认识论 政治 结构工程 语言学 计算机安全 政治学
作者
Tao Ren,Haodong Zhang,Yang Shi,Ximeng Luo,Siqi Zhou
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier]
卷期号:119: 108401-108401
标识
DOI:10.1016/j.jmgm.2022.108401
摘要

Recently, molecular representation and property exploration, with the combination of neural network, play a critical role in the field of drug design and discovery for assisting in drug related research. However, previous research in molecular representation relies heavily on artificial extraction of features based on biological experiments which may result in a manually introduced noise of molecular information with high cost in time and money. In this paper, a novel method named Substructural Hierarchical Attention Network (SuHAN) is proposed to discover inherent characteristics of molecules for representation learning. Specifically, SuHAN is composed of the cascaded layer: atom-level layer and substructure-level layer. Molecule in the SMILES format is divided into several substructural fragments by predefined partition rules, and then they are fed into atom-level layer and substructure-level layer successively to obtain feature representation from different perspective: atomic view and substructural view. In this way, the prominent structural features that may be omitted in global extraction are excavated from a fine-grained viewpoint and fused to reconstruct representative pattern in an overall view. Experiments on biophysics and physiology datasets demonstrate that our model is competitive with a significant improvement of both accuracy and stability in performance. We confirmed that the substructural segments and progressive hierarchical networks lead to an effective molecular representation for downstream tasks. These results provide a novel perspective about reconstructing overall pattern through local prominent structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助Z.one采纳,获得10
1秒前
dqycpu完成签到,获得积分10
3秒前
3秒前
3秒前
科研小白发布了新的文献求助10
5秒前
6秒前
6秒前
英俊的路关注了科研通微信公众号
6秒前
MrZhou完成签到,获得积分10
6秒前
7秒前
7秒前
CipherSage应助kaizi采纳,获得10
8秒前
华仔应助krrr采纳,获得10
8秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
科研小白完成签到,获得积分10
11秒前
禾火完成签到,获得积分10
11秒前
渡鸦12345发布了新的文献求助10
12秒前
Owen应助qll采纳,获得10
12秒前
Ava应助修水县1个科研人采纳,获得10
12秒前
领导范儿应助GFT采纳,获得10
12秒前
深情安青应助无语的安萱采纳,获得10
13秒前
南风不竞发布了新的文献求助20
13秒前
13秒前
13秒前
14秒前
宋莱文发布了新的文献求助10
14秒前
ff发布了新的文献求助10
15秒前
15秒前
realrrr发布了新的文献求助30
15秒前
西瓜发布了新的文献求助10
16秒前
Hello应助菜鸡采纳,获得10
16秒前
19应助cuijiawen采纳,获得10
17秒前
梓然发布了新的文献求助10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260724
求助须知:如何正确求助?哪些是违规求助? 2901803
关于积分的说明 8317417
捐赠科研通 2571442
什么是DOI,文献DOI怎么找? 1397024
科研通“疑难数据库(出版商)”最低求助积分说明 653638
邀请新用户注册赠送积分活动 632123