已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SuHAN: Substructural hierarchical attention network for molecular representation

代表(政治) 计算机科学 下部结构 特征(语言学) 子网 人工智能 透视图(图形) 模式识别(心理学) 图层(电子) 财产(哲学) 数据挖掘 纳米技术 材料科学 哲学 法学 工程类 认识论 政治 结构工程 语言学 计算机安全 政治学
作者
Tao Ren,Haodong Zhang,Yang Shi,Ximeng Luo,Siqi Zhou
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier]
卷期号:119: 108401-108401
标识
DOI:10.1016/j.jmgm.2022.108401
摘要

Recently, molecular representation and property exploration, with the combination of neural network, play a critical role in the field of drug design and discovery for assisting in drug related research. However, previous research in molecular representation relies heavily on artificial extraction of features based on biological experiments which may result in a manually introduced noise of molecular information with high cost in time and money. In this paper, a novel method named Substructural Hierarchical Attention Network (SuHAN) is proposed to discover inherent characteristics of molecules for representation learning. Specifically, SuHAN is composed of the cascaded layer: atom-level layer and substructure-level layer. Molecule in the SMILES format is divided into several substructural fragments by predefined partition rules, and then they are fed into atom-level layer and substructure-level layer successively to obtain feature representation from different perspective: atomic view and substructural view. In this way, the prominent structural features that may be omitted in global extraction are excavated from a fine-grained viewpoint and fused to reconstruct representative pattern in an overall view. Experiments on biophysics and physiology datasets demonstrate that our model is competitive with a significant improvement of both accuracy and stability in performance. We confirmed that the substructural segments and progressive hierarchical networks lead to an effective molecular representation for downstream tasks. These results provide a novel perspective about reconstructing overall pattern through local prominent structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2025211022发布了新的文献求助10
2秒前
3秒前
在水一方应助zm采纳,获得10
4秒前
8秒前
9秒前
细腻的枫叶完成签到 ,获得积分10
9秒前
10秒前
Mea发布了新的文献求助10
10秒前
一只发布了新的文献求助10
10秒前
BowieHuang应助Kenneth采纳,获得10
17秒前
CodeCraft应助fengl采纳,获得10
20秒前
文耀海完成签到,获得积分10
23秒前
一只完成签到,获得积分10
26秒前
嘿嘿发布了新的文献求助10
27秒前
29秒前
SciGPT应助积极的绫采纳,获得10
29秒前
无私保温杯完成签到,获得积分20
31秒前
screct完成签到,获得积分10
31秒前
orixero应助QQ采纳,获得10
32秒前
彭于晏应助Visitor_001采纳,获得10
32秒前
现代的擎苍完成签到,获得积分10
33秒前
喜乐发布了新的文献求助10
33秒前
33秒前
34秒前
晓奕完成签到,获得积分10
35秒前
RigdzinGyal发布了新的文献求助10
36秒前
fengl发布了新的文献求助10
38秒前
39秒前
Sandjames1889发布了新的文献求助10
39秒前
39秒前
罗先炀完成签到,获得积分10
40秒前
41秒前
42秒前
43秒前
可乐不加冰完成签到,获得积分10
44秒前
45秒前
QQ发布了新的文献求助10
45秒前
ren发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538224
求助须知:如何正确求助?哪些是违规求助? 4625430
关于积分的说明 14595889
捐赠科研通 4565994
什么是DOI,文献DOI怎么找? 2502869
邀请新用户注册赠送积分活动 1481206
关于科研通互助平台的介绍 1452435