SuHAN: Substructural hierarchical attention network for molecular representation

代表(政治) 计算机科学 下部结构 特征(语言学) 子网 人工智能 透视图(图形) 模式识别(心理学) 图层(电子) 财产(哲学) 数据挖掘 纳米技术 材料科学 语言学 哲学 计算机安全 结构工程 政治 政治学 法学 工程类 认识论
作者
Tao Ren,Haodong Zhang,Yang Shi,Ximeng Luo,Siqi Zhou
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier]
卷期号:119: 108401-108401
标识
DOI:10.1016/j.jmgm.2022.108401
摘要

Recently, molecular representation and property exploration, with the combination of neural network, play a critical role in the field of drug design and discovery for assisting in drug related research. However, previous research in molecular representation relies heavily on artificial extraction of features based on biological experiments which may result in a manually introduced noise of molecular information with high cost in time and money. In this paper, a novel method named Substructural Hierarchical Attention Network (SuHAN) is proposed to discover inherent characteristics of molecules for representation learning. Specifically, SuHAN is composed of the cascaded layer: atom-level layer and substructure-level layer. Molecule in the SMILES format is divided into several substructural fragments by predefined partition rules, and then they are fed into atom-level layer and substructure-level layer successively to obtain feature representation from different perspective: atomic view and substructural view. In this way, the prominent structural features that may be omitted in global extraction are excavated from a fine-grained viewpoint and fused to reconstruct representative pattern in an overall view. Experiments on biophysics and physiology datasets demonstrate that our model is competitive with a significant improvement of both accuracy and stability in performance. We confirmed that the substructural segments and progressive hierarchical networks lead to an effective molecular representation for downstream tasks. These results provide a novel perspective about reconstructing overall pattern through local prominent structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Katie完成签到,获得积分10
刚刚
LT发布了新的文献求助10
刚刚
1秒前
科研人完成签到,获得积分10
1秒前
FashionBoy应助彭彭采纳,获得10
1秒前
赤邪发布了新的文献求助10
2秒前
Owen应助lwei采纳,获得10
2秒前
shelly0621给shelly0621的求助进行了留言
2秒前
青木蓝完成签到,获得积分10
2秒前
2秒前
迅速泽洋完成签到,获得积分10
3秒前
dan1029完成签到,获得积分10
3秒前
小王完成签到,获得积分10
3秒前
李繁蕊发布了新的文献求助10
3秒前
4秒前
4秒前
隐形曼青应助hjj采纳,获得10
4秒前
susu完成签到,获得积分10
5秒前
6秒前
caicai发布了新的文献求助10
6秒前
无情的菲鹰完成签到,获得积分10
6秒前
兔兔完成签到 ,获得积分10
6秒前
打打应助勤奋的蜗牛采纳,获得10
6秒前
7秒前
jery完成签到,获得积分10
7秒前
乐乐应助润润轩轩采纳,获得10
8秒前
指哪打哪完成签到,获得积分10
8秒前
弄井发布了新的文献求助30
9秒前
9秒前
9秒前
9秒前
9秒前
Wing完成签到 ,获得积分10
10秒前
R先生发布了新的文献求助10
10秒前
科研小白发布了新的文献求助10
10秒前
年三月完成签到 ,获得积分10
11秒前
lb完成签到,获得积分20
11秒前
11秒前
香蕉觅云应助叶飞荷采纳,获得10
12秒前
flow发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762