已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic Bayesian network risk probability evolution for third-party damage of natural gas pipelines

贝叶斯网络 故障树分析 计算机科学 数据挖掘 概率逻辑 事件树 威布尔分布 风险分析(工程) 事件(粒子物理) 模糊逻辑 概率分布 管道运输 贝叶斯概率 可靠性工程 工程类 机器学习 人工智能 统计 数学 环境工程 医学 物理 量子力学
作者
Bingyuan Hong,Bowen Shao,Jian Ting Guo,Jianzhong Fu,Cuicui Li,Baikang Zhu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:333: 120620-120620 被引量:18
标识
DOI:10.1016/j.apenergy.2022.120620
摘要

Failure and leakage of natural gas pipelines can lead to serious ecological losses and casualties. Third-party damage has become an important cause of pipeline failure and leakage, which urgently needs an accurate risk assessment method to assess the risk. Conventional qualitative risk analysis methods can only point out the critical events of failure accidents but fails to predict the failure probability. This paper proposes a dynamic risk probability analysis method based on Dynamic Bayesian network (DBN), which is validated by a third-party damage case under uncertainty. First, human factors are taken as the main analysis object in the risk analysis, by which two subcategories of intentional and unintentional factors are classified. A complete risk factor analysis is performed by combining expert recommendations with the fault tree analysis method and developing a coupled model with the event sequence diagram. Second, in order to deal with the uncertainty of risk factors, the coupled model is mapped to a DBN model. The prior probabilities of the input DBN model are obtained by database, fuzzy set theory, and Dempster-Shafer evidence theory. Weibull distribution is applied to construct the probability transfer process between time segments, which better fits the characteristics of third-party disruptive factors in onshore pipelines. Finally, the practicality and advantages of the proposed method are demonstrated by a real case study, which identifies 6 critical events and predicts the probabilistic information in different time slices. Furthermore, the method predicts the probability of failure events and potential consequences by processing the time series information, and it is found that the probability of structural damage and explosion is higher than other consequences. In this way, some risk management countermeasures are proposed in a targeted manner. The results show that compared with the conventional BN model which only performs probabilistic inference once, the DBN model can perform temporal dynamic inference to achieve the prediction of failure probability, and it can effectively achieve the numerical prediction of risk failure probability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
包容的凛完成签到,获得积分10
2秒前
忍蛙完成签到,获得积分10
2秒前
Penny发布了新的文献求助10
3秒前
科研通AI2S应助一帆风顺采纳,获得10
3秒前
momo发布了新的文献求助30
3秒前
6秒前
MeetAgainLZH完成签到,获得积分10
7秒前
阳春发布了新的文献求助10
8秒前
乐枳完成签到 ,获得积分10
8秒前
威武鹤轩完成签到 ,获得积分10
9秒前
home完成签到,获得积分10
9秒前
14秒前
孤独的小蘑菇完成签到,获得积分10
15秒前
17秒前
17秒前
踏实努力完成签到 ,获得积分10
18秒前
wwwwwwwwwwww完成签到 ,获得积分10
20秒前
黄雪峰发布了新的文献求助10
20秒前
脆脆鲨鱼完成签到,获得积分10
21秒前
21秒前
22秒前
跋山涉水的巫师完成签到,获得积分10
23秒前
春辞发布了新的文献求助30
23秒前
舒心青旋完成签到 ,获得积分10
28秒前
wang_oms发布了新的文献求助10
31秒前
虚心怜阳完成签到 ,获得积分10
31秒前
闵卷完成签到,获得积分10
34秒前
aniu完成签到,获得积分10
36秒前
深白完成签到,获得积分10
38秒前
39秒前
yangsi发布了新的文献求助10
44秒前
完美世界应助wang_oms采纳,获得10
44秒前
汉堡包应助那一片海采纳,获得10
44秒前
张晓倩发布了新的文献求助10
46秒前
sunshine完成签到 ,获得积分10
47秒前
852应助zz采纳,获得20
52秒前
东方西瓜完成签到 ,获得积分10
53秒前
mmmxxxx完成签到,获得积分10
55秒前
yangsi完成签到,获得积分10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766983
求助须知:如何正确求助?哪些是违规求助? 3311367
关于积分的说明 10158304
捐赠科研通 3026493
什么是DOI,文献DOI怎么找? 1661196
邀请新用户注册赠送积分活动 793895
科研通“疑难数据库(出版商)”最低求助积分说明 755863