Dynamic Bayesian network risk probability evolution for third-party damage of natural gas pipelines

贝叶斯网络 故障树分析 计算机科学 数据挖掘 概率逻辑 事件树 威布尔分布 风险分析(工程) 事件(粒子物理) 模糊逻辑 概率分布 管道运输 贝叶斯概率 可靠性工程 工程类 机器学习 人工智能 统计 数学 环境工程 医学 物理 量子力学
作者
Bingyuan Hong,Bowen Shao,Jian Ting Guo,Jianzhong Fu,Cuicui Li,Baikang Zhu
出处
期刊:Applied Energy [Elsevier]
卷期号:333: 120620-120620 被引量:18
标识
DOI:10.1016/j.apenergy.2022.120620
摘要

Failure and leakage of natural gas pipelines can lead to serious ecological losses and casualties. Third-party damage has become an important cause of pipeline failure and leakage, which urgently needs an accurate risk assessment method to assess the risk. Conventional qualitative risk analysis methods can only point out the critical events of failure accidents but fails to predict the failure probability. This paper proposes a dynamic risk probability analysis method based on Dynamic Bayesian network (DBN), which is validated by a third-party damage case under uncertainty. First, human factors are taken as the main analysis object in the risk analysis, by which two subcategories of intentional and unintentional factors are classified. A complete risk factor analysis is performed by combining expert recommendations with the fault tree analysis method and developing a coupled model with the event sequence diagram. Second, in order to deal with the uncertainty of risk factors, the coupled model is mapped to a DBN model. The prior probabilities of the input DBN model are obtained by database, fuzzy set theory, and Dempster-Shafer evidence theory. Weibull distribution is applied to construct the probability transfer process between time segments, which better fits the characteristics of third-party disruptive factors in onshore pipelines. Finally, the practicality and advantages of the proposed method are demonstrated by a real case study, which identifies 6 critical events and predicts the probabilistic information in different time slices. Furthermore, the method predicts the probability of failure events and potential consequences by processing the time series information, and it is found that the probability of structural damage and explosion is higher than other consequences. In this way, some risk management countermeasures are proposed in a targeted manner. The results show that compared with the conventional BN model which only performs probabilistic inference once, the DBN model can perform temporal dynamic inference to achieve the prediction of failure probability, and it can effectively achieve the numerical prediction of risk failure probability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪儿完成签到 ,获得积分10
1秒前
小李完成签到,获得积分10
2秒前
3秒前
MM完成签到,获得积分10
7秒前
我就想看看文献完成签到 ,获得积分10
9秒前
Regina完成签到 ,获得积分10
12秒前
思源应助荡秋千的猴子采纳,获得10
13秒前
徐悦完成签到,获得积分10
15秒前
16秒前
17秒前
暴躁的老哥应助宸延采纳,获得30
19秒前
Ethan完成签到 ,获得积分0
19秒前
嘻嘻哈哈完成签到 ,获得积分10
20秒前
26秒前
PM2555完成签到 ,获得积分10
26秒前
123完成签到 ,获得积分10
29秒前
ycd完成签到,获得积分10
33秒前
权小夏完成签到 ,获得积分10
35秒前
jojo完成签到 ,获得积分10
36秒前
小张别吃了完成签到 ,获得积分10
36秒前
Qiancheni完成签到,获得积分10
37秒前
lichee完成签到 ,获得积分10
40秒前
啵叽一口完成签到 ,获得积分10
47秒前
yy完成签到 ,获得积分10
47秒前
科研通AI2S应助纳姆哒采纳,获得10
48秒前
刻苦羽毛完成签到 ,获得积分10
50秒前
小梦完成签到,获得积分10
53秒前
理想完成签到,获得积分10
54秒前
陌子完成签到 ,获得积分10
55秒前
酷酷的树叶完成签到 ,获得积分10
57秒前
nusiew完成签到,获得积分10
57秒前
1分钟前
jianrobsim发布了新的文献求助10
1分钟前
yiren完成签到 ,获得积分10
1分钟前
握瑾怀瑜完成签到 ,获得积分0
1分钟前
卓初露完成签到 ,获得积分10
1分钟前
星辰大海应助jianrobsim采纳,获得10
1分钟前
nicky完成签到 ,获得积分10
1分钟前
Dawn完成签到,获得积分10
1分钟前
惜曦完成签到 ,获得积分10
1分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434856
求助须知:如何正确求助?哪些是违规求助? 3032180
关于积分的说明 8944432
捐赠科研通 2720123
什么是DOI,文献DOI怎么找? 1492192
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685862